MAGIC: Making IMR-Based HDD Perform Like CMR-Based HDD

Yuhong Liang, Ming Chang Yang*, Shuo Han Chen

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

4 Scopus citations

Abstract

The past decades have witnessed the tremendous success of Conventional Magnetic Recording (CMR)-based Hard Disk Drives (HDDs) in data storage. To eliminate the bottleneck of CMR-based HDDs in providing higher areal density, an emerging Interlaced Magnetic Recording (IMR) is capable of achieving higher areal density with limited changes to disk makeup. Nevertheless, existing approaches for IMR-based HDDs may suffer serious read and write performance degradation as compared with CMR-based HDDs. Thus, this article presents a device-level solution, namely MAGIC translation layer, which aims at MA kinG I MR-based HDDs perform like C MR-based HDDs in terms of comparable access performance. Specifically, not merely trying to improve the performance of raw IMR-based HDDs, this work, for the first time, moves one step forward to minimize the performance gap between IMR and CMR-based HDDs. Technically, by 1) fully utilizing two special CMR-like potentials of IMR and 2) gracefully trading the sequential access performance as space usage increases, MAGIC minimizes track rewriting overheads to achieve CMR-like performance. Our results reveal that MAGIC not only improves the write performance compared with existing designs, but also has potential to approach read and write performance of CMR-based HDD.

Original languageEnglish
Pages (from-to)643-657
Number of pages15
JournalIEEE Transactions on Computers
Volume71
Issue number3
DOIs
StatePublished - 1 Mar 2022

Keywords

  • Conventional magnetic recording (CMR)
  • Hard disk drive (HDD)
  • Interlaced magnetic recording (IMR)
  • Interlaced translation layer (ITL)

Fingerprint

Dive into the research topics of 'MAGIC: Making IMR-Based HDD Perform Like CMR-Based HDD'. Together they form a unique fingerprint.

Cite this