Machine learning–based radiomics for molecular subtyping of gliomas

Chia Feng Lu, Fei Ting Hsu, Kevin Li Chun Hsieh, Yu Chieh Jill Kao, Sho Jen Cheng, Justin Bo Kai Hsu, Ping Huei Tsai, Ray Jade Chen, Chao Ching Huang, Yun Yen, Cheng Yu Chen*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

227 Scopus citations

Abstract

Purpose: The new classification announced by the World Health Organization in 2016 recognized five molecular subtypes of diffuse gliomas based on isocitrate dehydrogenase (IDH) and 1p/19q genotypes in addition to histologic phenotypes. We aim to determine whether clinical MRI can stratify these molecular subtypes to benefit the diagnosis and monitoring of gliomas. Experimental Design: The data from 456 subjects with gliomas were obtained from The Cancer Imaging Archive. Overall, 214 subjects, including 106 cases of glioblastomas and 108 cases of lower grade gliomas with preoperative MRI, survival data, histology, IDH, and 1p/19q status were included. We proposed a three-level machine-learning model based on multimodal MR radiomics to classify glioma subtypes. An independent dataset with 70 glioma subjects was further collected to verify the model performance. Results: The IDH and 1p/19q status of gliomas can be classified by radiomics and machine-learning approaches, with areas under ROC curves between 0.922 and 0.975 and accuracies between 87.7% and 96.1% estimated on the training dataset. The test on the validation dataset showed a comparable model performance with that on the training dataset, suggesting the efficacy of the trained classifiers. The classification of 5 molecular subtypes solely based on the MR phenotypes achieved an 81.8% accuracy, and a higher accuracy of 89.2% could be achieved if the histology diagnosis is available. Conclusions: The MR radiomics-based method provides a reliable alternative to determine the histology and molecular subtypes of gliomas.

Original languageEnglish
Pages (from-to)4429-4436
Number of pages8
JournalClinical Cancer Research
Volume24
Issue number18
DOIs
StatePublished - 15 Sep 2018

Fingerprint

Dive into the research topics of 'Machine learning–based radiomics for molecular subtyping of gliomas'. Together they form a unique fingerprint.

Cite this