TY - JOUR
T1 - Local mobility of the lac repressor molecule
AU - Bandyopadhyay, Pradip K.
AU - Wu, Felicia Y.H.
AU - Wu Lee, Cheng-Wen
PY - 1981/1/15
Y1 - 1981/1/15
N2 - The rotational mobility of lac repressor from Escherichia coli was investigated by nanosecond fluorescence depolarization spectroscopy. A single rotational correlation time (φ) of the repressor was observed by monitoring the emission anisotropic decay of the intrinsic tryptophan fluorescence. The small value of φ (9·5 ns) suggests that one or both of the two tryptophan residues in the repressor are located in a flexible segment of the protein molecule. This segmental flexibility is enhanced by binding of inducer (isopropyl-β-d-thiogalactoside) to the repressor while it is restrained by binding of anti-inducer (glucose) or small DNA fragments, as indicated by the changes in φ. Further time-dependent emission anisotropy studies with an extrinsic fluorescent probe, N-(iodoacetylaminoethyl)-5-naphthylamine-1-sulfonate, covalently attached to the repressor yielded two rotational correlation times. The shorter φS (6·7 ns) also corresponds to a segmental flexibility whereas the longer φL (118 ns) represents the rotational motion of the entire repressor molecule. Both the values of φS and φL vary by addition of inducer or anti-inducer in a manner similar to that observed for the intrinsic tryptophan fluorescence but they are insensitive to addition of DNA fragments. The changes in local mobility of the lac repressor molecule observed in these studies may provide some insight into how inducer (or anti-inducer) destabilizes (or stabilizes) the repressor-operator complex.
AB - The rotational mobility of lac repressor from Escherichia coli was investigated by nanosecond fluorescence depolarization spectroscopy. A single rotational correlation time (φ) of the repressor was observed by monitoring the emission anisotropic decay of the intrinsic tryptophan fluorescence. The small value of φ (9·5 ns) suggests that one or both of the two tryptophan residues in the repressor are located in a flexible segment of the protein molecule. This segmental flexibility is enhanced by binding of inducer (isopropyl-β-d-thiogalactoside) to the repressor while it is restrained by binding of anti-inducer (glucose) or small DNA fragments, as indicated by the changes in φ. Further time-dependent emission anisotropy studies with an extrinsic fluorescent probe, N-(iodoacetylaminoethyl)-5-naphthylamine-1-sulfonate, covalently attached to the repressor yielded two rotational correlation times. The shorter φS (6·7 ns) also corresponds to a segmental flexibility whereas the longer φL (118 ns) represents the rotational motion of the entire repressor molecule. Both the values of φS and φL vary by addition of inducer or anti-inducer in a manner similar to that observed for the intrinsic tryptophan fluorescence but they are insensitive to addition of DNA fragments. The changes in local mobility of the lac repressor molecule observed in these studies may provide some insight into how inducer (or anti-inducer) destabilizes (or stabilizes) the repressor-operator complex.
UR - http://www.scopus.com/inward/record.url?scp=0019433220&partnerID=8YFLogxK
U2 - 10.1016/0022-2836(81)90210-2
DO - 10.1016/0022-2836(81)90210-2
M3 - Article
C2 - 7021853
AN - SCOPUS:0019433220
VL - 145
SP - 363
EP - 373
JO - Journal of Molecular Biology
JF - Journal of Molecular Biology
SN - 0022-2836
IS - 2
ER -