LED2-Net: Monocular 360 layout estimation via differentiable depth rendering

Fu En Wang, Yu Hsuan Yeh, Min Sun, Wei Chen Chiu, Yi Hsuan Tsai

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

40 Scopus citations

Abstract

Although significant progress has been made in room layout estimation, most methods aim to reduce the loss in the 2D pixel coordinate rather than exploiting the room structure in the 3D space. Towards reconstructing the room layout in 3D, we formulate the task of 360 layout estimation as a problem of predicting depth on the horizon line of a panorama. Specifically, we propose the Differentiable Depth Rendering procedure to make the conversion from layout to depth prediction differentiable, thus making our proposed model end-to-end trainable while leveraging the 3D geometric information, without the need of providing the ground truth depth. Our method achieves state-of-the-art performance on numerous 360 layout benchmark datasets. Moreover, our formulation enables a pre-training step on the depth dataset, which further improves the generalizability of our layout estimation model.

Original languageEnglish
Title of host publicationProceedings - 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2021
PublisherIEEE Computer Society
Pages12951-12960
Number of pages10
ISBN (Electronic)9781665445092
DOIs
StatePublished - 2021
Event2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2021 - Virtual, Online, United States
Duration: 19 Jun 202125 Jun 2021

Publication series

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
ISSN (Print)1063-6919

Conference

Conference2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2021
Country/TerritoryUnited States
CityVirtual, Online
Period19/06/2125/06/21

Fingerprint

Dive into the research topics of 'LED2-Net: Monocular 360 layout estimation via differentiable depth rendering'. Together they form a unique fingerprint.

Cite this