TY - GEN
T1 - Learning Sim-to-Real Dense Object Descriptors for Robotic Manipulation
AU - Cao, Hoang Giang
AU - Zeng, Weihao
AU - Wu, I. Chen
N1 - Publisher Copyright:
© 2023 IEEE.
PY - 2023
Y1 - 2023
N2 - It is crucial to address the following issues for ubiquitous robotics manipulation applications: (a) vision-based manipulation tasks require the robot to visually learn and understand the object with rich information like dense object descriptors; and (b) sim-to-real transfer in robotics aims to close the gap between simulated and real data. In this paper, we present Sim-to-Real Dense Object Nets (SRDONs), a dense object descriptors that not only understands the object via appropriate representation but also maps simulated and real data to a unified feature space with pixel consistency. We proposed an object-to-object matching method for image pairs from different scenes and different domains. This method helps reduce the effort of training data from real-world by taking advantage of public datasets, such as GraspNet. With sim-to-real object representation consistency, our SRDONs can serve as a building block for a variety of sim-to-real manipulation tasks. We demonstrate in experiments that pre-trained SRDONs significantly improve performances on unseen objects and unseen visual environments for various robotic tasks with zero real-world training.
AB - It is crucial to address the following issues for ubiquitous robotics manipulation applications: (a) vision-based manipulation tasks require the robot to visually learn and understand the object with rich information like dense object descriptors; and (b) sim-to-real transfer in robotics aims to close the gap between simulated and real data. In this paper, we present Sim-to-Real Dense Object Nets (SRDONs), a dense object descriptors that not only understands the object via appropriate representation but also maps simulated and real data to a unified feature space with pixel consistency. We proposed an object-to-object matching method for image pairs from different scenes and different domains. This method helps reduce the effort of training data from real-world by taking advantage of public datasets, such as GraspNet. With sim-to-real object representation consistency, our SRDONs can serve as a building block for a variety of sim-to-real manipulation tasks. We demonstrate in experiments that pre-trained SRDONs significantly improve performances on unseen objects and unseen visual environments for various robotic tasks with zero real-world training.
UR - http://www.scopus.com/inward/record.url?scp=85168688052&partnerID=8YFLogxK
U2 - 10.1109/ICRA48891.2023.10161477
DO - 10.1109/ICRA48891.2023.10161477
M3 - Conference contribution
AN - SCOPUS:85168688052
T3 - Proceedings - IEEE International Conference on Robotics and Automation
SP - 9501
EP - 9507
BT - Proceedings - ICRA 2023
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2023 IEEE International Conference on Robotics and Automation, ICRA 2023
Y2 - 29 May 2023 through 2 June 2023
ER -