TY - JOUR
T1 - Label-Free Characterization of Collagen Crosslinking in Bone-Engineered Materials Using Nonlinear Optical Microscopy
AU - Hung, Chao Wei
AU - Mazumder, Nirmal
AU - Lin, Dan Jae
AU - Chen, Wei Liang
AU - Lin, Shih Ting
AU - Chan, Ming Che
AU - Zhuo, Guan Yu
N1 - Publisher Copyright:
© 2021 Cambridge University Press. All rights reserved.
PY - 2021/6
Y1 - 2021/6
N2 - Engineered biomaterials provide unique functions to overcome the bottlenecks seen in biomedicine. Hence, a technique for rapid and routine tests of collagen is required, in which the test items commonly include molecular weight, crosslinking degree, purity, and sterilization induced structural change. Among them, the crosslinking degree mainly influences collagen properties. In this study, second harmonic generation (SHG) and coherent anti-Stokes Raman scattering (CARS) microscopy are used in combination to explore the collagen structure at molecular and macromolecular scales. These measured parameters are applied for the classification and quantification among the different collagen scaffolds, which were verified by other conventional methods. It is demonstrated that the crosslinking status can be analyzed from SHG images and presented as the coherency of collagen organization that is correlated with the mechanical properties. Also, the comparative analyses of SHG signal and relative CARS signal of amide III band at 1,240 cm-1to CH2 band at 1,450 cm-1of these samples provide information regarding the variation of the molecular structure during a crosslinking process, thus serving as nonlinear optical signatures to indicate a successful crosslinking.
AB - Engineered biomaterials provide unique functions to overcome the bottlenecks seen in biomedicine. Hence, a technique for rapid and routine tests of collagen is required, in which the test items commonly include molecular weight, crosslinking degree, purity, and sterilization induced structural change. Among them, the crosslinking degree mainly influences collagen properties. In this study, second harmonic generation (SHG) and coherent anti-Stokes Raman scattering (CARS) microscopy are used in combination to explore the collagen structure at molecular and macromolecular scales. These measured parameters are applied for the classification and quantification among the different collagen scaffolds, which were verified by other conventional methods. It is demonstrated that the crosslinking status can be analyzed from SHG images and presented as the coherency of collagen organization that is correlated with the mechanical properties. Also, the comparative analyses of SHG signal and relative CARS signal of amide III band at 1,240 cm-1to CH2 band at 1,450 cm-1of these samples provide information regarding the variation of the molecular structure during a crosslinking process, thus serving as nonlinear optical signatures to indicate a successful crosslinking.
KW - coherent anti-Stokes Raman scattering
KW - collagen crosslinking
KW - molecular orientation
KW - nonlinear optical microscopy
KW - second harmonic generation
UR - http://www.scopus.com/inward/record.url?scp=85103932029&partnerID=8YFLogxK
U2 - 10.1017/S1431927621000295
DO - 10.1017/S1431927621000295
M3 - Article
AN - SCOPUS:85103932029
SN - 1431-9276
VL - 27
SP - 1
EP - 11
JO - Microscopy and Microanalysis
JF - Microscopy and Microanalysis
IS - 3
ER -