TY - GEN
T1 - Investigation on tri-propellant hybrid rocket performance
AU - Chen, Yen Sen
AU - Lai, Alfred
AU - Lin, Jhe Wei
AU - Wei, Shih Sin
AU - Chou, Tzu Hao
AU - Wu, Jong-Shinn
PY - 2016/1/1
Y1 - 2016/1/1
N2 - In this study, the overall performance enhancement and the solution to the excessively high heat flux problem in the fore-end chamber of a dual-vortical-flow (DVF) hybrid rocket engine is investigated by employing a design concept of tri-propellant combustion. Numerical investigation is conducted in the present study, which is serving as a guideline for experimental validation tests that will follow. A Navier-Stokes solution method suitable for all speed regimes with unstructured-mesh discretization approach is employed in this study. This flow solver also features a very-large-eddy simulation turbulence model based on an extended two-equation turbulence model, a finite-rate chemistry model with real-fluid thermodynamics properties, solid propellant surface thermal balance model, and a gray-gas radiative transfer model. The baseline dual-vortical-flow hybrid rocket engine design can use N2O/HTPB, N2O/HDPE, H2O2/HTPB or H2O2/HDPE propellant combinations. Gaseous hydrogen is proposed to be added to the baseline system in the present tripropellant combustion applications. Performance enhancement of the present tri-propellant design is revealed in the numerical solutions and the fore-end chamber solid propellant surface is suitably protected against the high heat flux in the central-port region.
AB - In this study, the overall performance enhancement and the solution to the excessively high heat flux problem in the fore-end chamber of a dual-vortical-flow (DVF) hybrid rocket engine is investigated by employing a design concept of tri-propellant combustion. Numerical investigation is conducted in the present study, which is serving as a guideline for experimental validation tests that will follow. A Navier-Stokes solution method suitable for all speed regimes with unstructured-mesh discretization approach is employed in this study. This flow solver also features a very-large-eddy simulation turbulence model based on an extended two-equation turbulence model, a finite-rate chemistry model with real-fluid thermodynamics properties, solid propellant surface thermal balance model, and a gray-gas radiative transfer model. The baseline dual-vortical-flow hybrid rocket engine design can use N2O/HTPB, N2O/HDPE, H2O2/HTPB or H2O2/HDPE propellant combinations. Gaseous hydrogen is proposed to be added to the baseline system in the present tripropellant combustion applications. Performance enhancement of the present tri-propellant design is revealed in the numerical solutions and the fore-end chamber solid propellant surface is suitably protected against the high heat flux in the central-port region.
KW - Computational fluid dynamics
KW - Dual-vortical-flow chamber
KW - Finite-rate chemistry
KW - Hybrid rocket engine
KW - Tri-propellant design
UR - http://www.scopus.com/inward/record.url?scp=84983517129&partnerID=8YFLogxK
U2 - 10.2514/6.2016-4659
DO - 10.2514/6.2016-4659
M3 - Conference contribution
SN - 9781624104060
T3 - 52nd AIAA/SAE/ASEE Joint Propulsion Conference, 2016
BT - 52nd AIAA/SAE/ASEE Joint Propulsion Conference, 2016
PB - American Institute of Aeronautics and Astronautics Inc, AIAA
T2 - 52nd AIAA/SAE/ASEE Joint Propulsion Conference, 2016
Y2 - 25 July 2016 through 27 July 2016
ER -