TY - JOUR
T1 - Infrared Characterization of the Products of the Reaction between the Criegee Intermediate CH3CHOO and HCl
AU - Su, Zih Syuan
AU - Lee, Yuan Pern
N1 - Publisher Copyright:
© 2023 American Chemical Society
PY - 2023/8/24
Y1 - 2023/8/24
N2 - The rapid reactions between Criegee intermediates and hydrogen halides play important roles in atmospheric chemistry, particularly in the polluted urban atmosphere. Employing a step-scan Fourier transform spectrometer, we recorded infrared absorption spectra of transient species and end products of the reaction CH3CHOO + HCl in a flowing mixture of CH3CHI2/HCl/O2/N2 irradiated at 308 nm. Bands at 1453.6, 1383.7, 1357.9, 1323.8, 1271.8, 1146.2, 1098.2, 1017.5, 931.5, and 847.0 cm-1 were observed and assigned to the anti-conformer of chloroethyl hydroperoxide (anti-CEHP or anti-CH3CHClOOH). In addition, absorption bands of H2O and acetyl chloride [CH3C(O)Cl, at 1819.1 cm-1] were observed; some of them were produced from the secondary reactions of CH3CHClO + O2 → CH3C(O)Cl + HO2 and OH + HCl → H2O + Cl, according to temporal profiles of H2O and CH3C(O)Cl. These secondary reactions are conceivable because the nascent formation of CH3CHClO + OH via decomposition of internally excited CEHP was predicted by theory, and both HCl and O2 are major species in the system. The nascent formation of CH3CHClO + OH appears to be more important than that of CH3C(O)Cl + H2O, consistent with theoretical predictions. By adding methanol to deplete some anti-CH3CHOO, we observed only anti-CEHP with a reduced proportion; this observation indicates that the conversion from syn-CEHP, expected to be produced from syn-CH3CHOO + HCl, to anti-CEHP is facile. We also estimated the overall rate coefficient of the reaction syn-/anti-CH3CHOO + HCl to be kHCl = (2.7 ± 1.0) × 10-10 cm3 molecule-1 s-1 at ∼70 Torr and 298 K; this rate coefficient is about six times the only literature value kHClsyn = (4.77 ± 0.95) × 10-11 cm3 molecule-1 s-1 reported for syn-CH3CHOO + HCl by Liu et al., indicating that anti-CH3CHOO reacts with HCl much more rapidly than syn-CH3CHOO.
AB - The rapid reactions between Criegee intermediates and hydrogen halides play important roles in atmospheric chemistry, particularly in the polluted urban atmosphere. Employing a step-scan Fourier transform spectrometer, we recorded infrared absorption spectra of transient species and end products of the reaction CH3CHOO + HCl in a flowing mixture of CH3CHI2/HCl/O2/N2 irradiated at 308 nm. Bands at 1453.6, 1383.7, 1357.9, 1323.8, 1271.8, 1146.2, 1098.2, 1017.5, 931.5, and 847.0 cm-1 were observed and assigned to the anti-conformer of chloroethyl hydroperoxide (anti-CEHP or anti-CH3CHClOOH). In addition, absorption bands of H2O and acetyl chloride [CH3C(O)Cl, at 1819.1 cm-1] were observed; some of them were produced from the secondary reactions of CH3CHClO + O2 → CH3C(O)Cl + HO2 and OH + HCl → H2O + Cl, according to temporal profiles of H2O and CH3C(O)Cl. These secondary reactions are conceivable because the nascent formation of CH3CHClO + OH via decomposition of internally excited CEHP was predicted by theory, and both HCl and O2 are major species in the system. The nascent formation of CH3CHClO + OH appears to be more important than that of CH3C(O)Cl + H2O, consistent with theoretical predictions. By adding methanol to deplete some anti-CH3CHOO, we observed only anti-CEHP with a reduced proportion; this observation indicates that the conversion from syn-CEHP, expected to be produced from syn-CH3CHOO + HCl, to anti-CEHP is facile. We also estimated the overall rate coefficient of the reaction syn-/anti-CH3CHOO + HCl to be kHCl = (2.7 ± 1.0) × 10-10 cm3 molecule-1 s-1 at ∼70 Torr and 298 K; this rate coefficient is about six times the only literature value kHClsyn = (4.77 ± 0.95) × 10-11 cm3 molecule-1 s-1 reported for syn-CH3CHOO + HCl by Liu et al., indicating that anti-CH3CHOO reacts with HCl much more rapidly than syn-CH3CHOO.
UR - http://www.scopus.com/inward/record.url?scp=85168776655&partnerID=8YFLogxK
U2 - 10.1021/acs.jpca.3c03527
DO - 10.1021/acs.jpca.3c03527
M3 - Article
C2 - 37561815
AN - SCOPUS:85168776655
SN - 1089-5639
VL - 127
SP - 6902
EP - 6915
JO - Journal of Physical Chemistry A
JF - Journal of Physical Chemistry A
IS - 33
ER -