Infrared absorption of t -HOCO + , H + (CO 2 ) 2 , and HCO 2 - produced in electron bombardment of CO 2 in solid para -H 2

Prasanta Das, Masashi Tsuge, Yuan-Pern Lee*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

11 Scopus citations

Abstract

We have employed electron bombardment during matrix deposition of CO2 (or 13CO2, C18O2) and para-hydrogen (p-H2) at 3.2 K and recorded infrared (IR) spectra of t-HOCO+, H+(CO2)2, HCO2-, CO2-, t-HOCO, and other species isolated in solid p-H2. After the matrix was maintained in darkness for 13 h, intensities of absorption features of t-HOCO+ at 2403.5 (ν1), 2369.9 (ν2), 1018.1 (ν4), and 606.5 (ν6) cm-1 and those of H+(CO2)2 at 1341.1, 883.6, and 591.5 cm-1 decreased. Corresponding lines of isotopologues were observed when 13CO2 or C18O2 replaced CO2. In contrast, lines of HCO2- at 2522.4 (ν1), 1616.1 (ν5), 1327.9 (ν2), and 745.6 (ν3) cm-1 increased in intensity; corresponding lines of H13CO2- or HC18O2- were also observed. Lines of t-DOCO+ and DCO2- were observed in an electron bombarded CO2 /normal-deuterium (n-D2) matrix. Data of ν6 of t-HOCO+ and all observed modes of H18OC18O+ and HC18O2- are new. The assignments were made according to expected chemical behavior, observed isotopic shifts, and comparisons with vibrational wavenumbers and relative intensities of previous reports and calculations with the B3PW91/aug-cc-pVQZ method. The ν1 line of t-HOCO+ in solid p-H2 (2403.5 cm-1), similar to the line at 2673 cm-1 of t-HOCO+ tagged with an Ar atom, is significantly red-shifted from that reported for gaseous t-HOCO+ (3375.37 cm-1) due to partial proton sharing between CO2 and H2 or Ar. The ν1 line of HCO2- in solid p-H2 (2522.4 cm-1) is blue shifted from that reported for HCO2- in solid Ne (2455.7 cm-1) and that of HCO2- tagged with Ar (2449 cm-1); this can be explained by the varied solvation effects by Ne, Ar, or H2 on the mixing of H+ + CO2 and H + CO2- surfaces. Possible formation mechanisms of t-HOCO+, H+(CO2)2, HCO2-, CO2-, t-HOCO, H2O, and t-HCOOH are discussed.

Original languageEnglish
Article number014306
JournalJournal of Chemical Physics
Volume145
Issue number1
DOIs
StatePublished - 7 Jul 2016

Fingerprint

Dive into the research topics of 'Infrared absorption of t -HOCO + , H + (CO 2 ) 2 , and HCO 2 - produced in electron bombardment of CO 2 in solid para -H 2'. Together they form a unique fingerprint.

Cite this