Influences of the non-uniform pin-fin array on heat transfer distribution in a rotating rectangular channel

Shuo Cheng Hung, Szu Chi Huang, Yao-Hsien Liu

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

7 Scopus citations

Abstract

The liquid crystal thermography was used to investigate the heat transfer of non-uniform pin-fin arrays in a rotating rectangular channel (AR = 4:1) at a channel orientation of 135°. The pin-fin array consisted of four and three pins in a staggered arrangement. The different sized pins were inserted at the rows exhibiting four pins, which produced a non-uniform distribution of the pin-fin array. The experiments were operated at Reynolds numbers of 10,000 and 20,000 for both stationary and rotating conditions. The rotation number varied from 0 to 0.33 and the buoyancy parameter ranged from 0 to 0.27. Results indicated that various heat transfer contours were observed as a result of flow separation and vortices caused by non-uniform pins. Compared to the stationary case, rotation increased heat transfer on both trailing and leading surfaces. The pin-fin array consisted of 6 and 9 mm pins produced the highest heat transfer and frictional losses under rotation condition.

Original languageEnglish
Title of host publicationHeat Transfer
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Print)9780791851081
DOIs
StatePublished - 1 Jan 2018
EventASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition, GT 2018 - Oslo, Norway
Duration: 11 Jun 201815 Jun 2018

Publication series

NameProceedings of the ASME Turbo Expo
Volume5A-2018

Conference

ConferenceASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition, GT 2018
Country/TerritoryNorway
CityOslo
Period11/06/1815/06/18

Fingerprint

Dive into the research topics of 'Influences of the non-uniform pin-fin array on heat transfer distribution in a rotating rectangular channel'. Together they form a unique fingerprint.

Cite this