TY - GEN
T1 - Inferring distant-Time location in low-sampling-rate trajectories
AU - Chiang, Meng Fen
AU - Lin, Yung Hsiang
AU - Peng, Wen-Chih
AU - Yu, Philip S.
PY - 2013/8/11
Y1 - 2013/8/11
N2 - With the growth of location-based services and social services, low- sampling-rate trajectories from check-in data or photos with geo-Tag information becomes ubiquitous. In general, most detailed moving information in low-sampling-rate trajectories are lost. Prior works have elaborated on distant-Time location prediction in high- sampling-rate trajectories. However, existing prediction models are pattern-based and thus not applicable due to the sparsity of data points in low-sampling-rate trajectories. To address the sparsity in low-sampling-rate trajectories, we develop a Reachability-based prediction model on Time-constrained Mobility Graph (RTMG) to predict locations for distant-Time queries. Specifically, we de- sign an adaptive temporal exploration approach to extract effective supporting trajectories that are temporally close to the query time. Based on the supporting trajectories, a Time-constrained mobility Graph (TG) is constructed to capture mobility information at the given query time. In light of TG, we further derive the reachability probabilities among locations in TG. Thus, a location with maximum reachability from the current location among all possible locations in supporting trajectories is considered as the prediction result. To efficiently process queries, we proposed the index structure Sorted Interval-Tree (SOIT) to organize location records. Extensive experiments with real data demonstrated the effectiveness and efficiency of RTMG. First, RTMG with adaptive tempo- ral exploration significantly outperforms the existing pattern-based prediction model HPM [2] over varying data sparsity in terms of higher accuracy and higher coverage. Also, the proposed index structure SOIT can efficiently speedup RTMG in large-scale trajectory dataset. In the future, we could extend RTMG by considering more factors (e.g., staying durations in locations, application usages in smart phones) to further improve the prediction accuracy.
AB - With the growth of location-based services and social services, low- sampling-rate trajectories from check-in data or photos with geo-Tag information becomes ubiquitous. In general, most detailed moving information in low-sampling-rate trajectories are lost. Prior works have elaborated on distant-Time location prediction in high- sampling-rate trajectories. However, existing prediction models are pattern-based and thus not applicable due to the sparsity of data points in low-sampling-rate trajectories. To address the sparsity in low-sampling-rate trajectories, we develop a Reachability-based prediction model on Time-constrained Mobility Graph (RTMG) to predict locations for distant-Time queries. Specifically, we de- sign an adaptive temporal exploration approach to extract effective supporting trajectories that are temporally close to the query time. Based on the supporting trajectories, a Time-constrained mobility Graph (TG) is constructed to capture mobility information at the given query time. In light of TG, we further derive the reachability probabilities among locations in TG. Thus, a location with maximum reachability from the current location among all possible locations in supporting trajectories is considered as the prediction result. To efficiently process queries, we proposed the index structure Sorted Interval-Tree (SOIT) to organize location records. Extensive experiments with real data demonstrated the effectiveness and efficiency of RTMG. First, RTMG with adaptive tempo- ral exploration significantly outperforms the existing pattern-based prediction model HPM [2] over varying data sparsity in terms of higher accuracy and higher coverage. Also, the proposed index structure SOIT can efficiently speedup RTMG in large-scale trajectory dataset. In the future, we could extend RTMG by considering more factors (e.g., staying durations in locations, application usages in smart phones) to further improve the prediction accuracy.
KW - Location prediction
KW - Reachability
KW - Sparsity
UR - http://www.scopus.com/inward/record.url?scp=84999831319&partnerID=8YFLogxK
U2 - 10.1145/2487575.2487707
DO - 10.1145/2487575.2487707
M3 - Conference contribution
AN - SCOPUS:84999831319
T3 - Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
SP - 1454
EP - 1457
BT - KDD 2013 - 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
A2 - Parekh, Rajesh
A2 - He, Jingrui
A2 - Inderjit, Dhillon S.
A2 - Bradley, Paul
A2 - Koren, Yehuda
A2 - Ghani, Rayid
A2 - Senator, Ted E.
A2 - Grossman, Robert L.
A2 - Uthurusamy, Ramasamy
PB - Association for Computing Machinery
T2 - 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2013
Y2 - 11 August 2013 through 14 August 2013
ER -