Abstract
A bimetallic Fe/Al disinfection system was developed to examine the feasibility of inactivation of water borne microorganisms. In this study, the effectiveness and mechanisms of the bimetallic Fe/Al system on the inactivation of model bacteria, Escherichia coli (E. coli), were investigated. Results revealed that the Fe/Al system effectively inactivated E. coli to reach nearly 2 logs (99%) removal within 20 min and 4 logs (99.99%) at 24 h, indicating that the Fe/Al composite was able to sustain a long-term disinfection capacity. The inactivation ability resulted from hydroxyl radicals produced by a Fenton reaction through in-situ self-generated Fe2+ and H2O2 species in the Fe/Al system. In addition to the attack by the radicals, some of E. coli were adsorbed onto the Fe/Al composite (zeta potential of 30–50 mV) as a result of Coulomb interaction. Scanning electron microscope (SEM) images showed that the adsorbed bacteria had damaged pores at the two ends of their rod-like cells. This phenomenon suggested that a micro-electric field between the Fe/Al galvanic couple induced electroporation of the adsorbed E. coli and thus further advanced additional inactivation ability for the bacteria disinfection.
Original language | English |
---|---|
Article number | 134371 |
Journal | Chemosphere |
Volume | 299 |
DOIs | |
State | Published - Jul 2022 |
Keywords
- Advanced oxidation processes
- Disinfection
- E. coli
- Electroporation
- Sustainable development goals
- Zero-valent iron