TY - JOUR
T1 - In vitro SUMOylation assay to study SUMO E3 ligase activity
AU - Yang, Wan Shan
AU - Campbell, Mel
AU - Kung, Hsing Jien
AU - Chang, Pei Ching
N1 - Publisher Copyright:
© 2018 Journal of Visualized Experiments.
PY - 2018/1/29
Y1 - 2018/1/29
N2 - Small ubiquitin-like modifier (SUMO) modification is an important post-translational modification (PTM) that mediates signal transduction primarily through modulating protein-protein interactions. Similar to ubiquitin modification, SUMOylation is directed by a sequential enzyme cascade including E1-activating enzyme (SAE1/SAE2), E2-conjugation enzyme (Ubc9), and E3-ligase (i.e., PIAS family, RanBP2, and Pc2). However, different from ubiquitination, an E3 ligase is non-essential for the reaction but does provide precision and efficacy for SUMO conjugation. Proteins modified by SUMOylation can be identified by in vivo assay via immunoprecipitation with substrate-specific antibodies and immunoblotting with SUMO-specific antibodies. However, the demonstration of protein SUMO E3 ligase activity requires in vitro reconstitution of SUMOylation assays using purified enzymes, substrate, and SUMO proteins. Since in the in vitro reactions, usually SAE1/SAE2 and Ubc9, alone are sufficient for SUMO conjugation, enhancement of SUMOylation by a putative E3 ligase is not always easy to detect. Here, we describe a modified in vitro SUMOylation protocol that consistently identifies SUMO modification using an in vitro reconstituted system. A step-by-step protocol to purify catalytically active K-bZIP, a viral SUMO-2/3 E3 ligase, is also presented. The SUMOylation activities of the purified K-bZIP are shown on p53, a well-known target of SUMO. This protocol can not only be employed for elucidating novel SUMO E3 ligases, but also for revealing their SUMO paralog specificity.
AB - Small ubiquitin-like modifier (SUMO) modification is an important post-translational modification (PTM) that mediates signal transduction primarily through modulating protein-protein interactions. Similar to ubiquitin modification, SUMOylation is directed by a sequential enzyme cascade including E1-activating enzyme (SAE1/SAE2), E2-conjugation enzyme (Ubc9), and E3-ligase (i.e., PIAS family, RanBP2, and Pc2). However, different from ubiquitination, an E3 ligase is non-essential for the reaction but does provide precision and efficacy for SUMO conjugation. Proteins modified by SUMOylation can be identified by in vivo assay via immunoprecipitation with substrate-specific antibodies and immunoblotting with SUMO-specific antibodies. However, the demonstration of protein SUMO E3 ligase activity requires in vitro reconstitution of SUMOylation assays using purified enzymes, substrate, and SUMO proteins. Since in the in vitro reactions, usually SAE1/SAE2 and Ubc9, alone are sufficient for SUMO conjugation, enhancement of SUMOylation by a putative E3 ligase is not always easy to detect. Here, we describe a modified in vitro SUMOylation protocol that consistently identifies SUMO modification using an in vitro reconstituted system. A step-by-step protocol to purify catalytically active K-bZIP, a viral SUMO-2/3 E3 ligase, is also presented. The SUMOylation activities of the purified K-bZIP are shown on p53, a well-known target of SUMO. This protocol can not only be employed for elucidating novel SUMO E3 ligases, but also for revealing their SUMO paralog specificity.
KW - In vitro SUMOylation
KW - Issue 131
KW - K-bZIP
KW - Molecular Biology
KW - P53
KW - Post-translational modification
KW - SUMO E3 ligase
KW - Ubc9
UR - http://www.scopus.com/inward/record.url?scp=85042016527&partnerID=8YFLogxK
U2 - 10.3791/56629
DO - 10.3791/56629
M3 - Article
C2 - 29443041
AN - SCOPUS:85042016527
SN - 1940-087X
VL - 2018
JO - Journal of Visualized Experiments
JF - Journal of Visualized Experiments
IS - 131
M1 - e56629
ER -