In Situ Forming of Nitric Oxide and Electric Stimulus for Nerve Therapy by Wireless Chargeable Gold Yarn-Dynamos

Min Ren Chiang, Ya Hui Lin, Wei Jie Zhao, Hsiu Ching Liu, Ru Siou Hsu, Tsu Chin Chou, Tsai Te Lu, I. Chi Lee, Lun De Liao, Shih Hwa Chiou, Li An Chu*, Shang Hsiu Hu*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

Endogenous signals, namely nitric oxide (NO) and electrons, play a crucial role in regulating cell fate as well as the vascular and neuronal systems. Unfortunately, utilizing NO and electrical stimulation in clinical settings can be challenging due to NO's short half-life and the invasive electrodes required for electrical stimulation. Additionally, there is a lack of tools to spatiotemporally control gas release and electrical stimulation. To address these issues, an “electromagnetic messenger” approach that employs on-demand high-frequency magnetic field (HFMF) to trigger NO release and electrical stimulation for restoring brain function in cases of traumatic brain injury is introduced. The system comprises a NO donor (poly(S-nitrosoglutathione), pGSNO)-conjugated on a gold yarn-dynamos (GY) and embedded in an implantable silk in a microneedle. When subjected to HFMF, conductive GY induces eddy currents that stimulate the release of NO from pGSNO. This process significantly enhances neural stem cell (NSC) synapses' differentiation and growth. The combined strategy of using NO and electrical stimulation to inhibit inflammation, angiogenesis, and neuronal interrogation in traumatic brain injury is demonstrated in vivo.

Original languageEnglish
Article number2303566
JournalAdvanced Science
Volume10
Issue number33
DOIs
StatePublished - 24 Nov 2023

Keywords

  • gas therapy
  • gold nanoparticles
  • nerve regeneration
  • nitric oxide
  • wireless charging

Fingerprint

Dive into the research topics of 'In Situ Forming of Nitric Oxide and Electric Stimulus for Nerve Therapy by Wireless Chargeable Gold Yarn-Dynamos'. Together they form a unique fingerprint.

Cite this