Improved stacked ensemble with genetic algorithm for automatic ECG diagnosis of children living in high-altitude areas

Na Zhao, Xiaopeng Li, Yaofei Ma, Hao Wang, Shin Jye Lee*, Jian Wang

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

4 Scopus citations

Abstract

Electrocardiogram (ECG) is a commonly used diagnostic tool in clinical practice that plays a vital role in the diagnosis and treatment of various heart diseases. Previous studies have indicated that the incidence of heart disease in children living in high-altitude areas is significantly higher than those in low-altitude areas, which increases the demand for ECG examinations in these regions. However, there is a lack of research and technology that focus on automatic ECG diagnosis for children in high-altitude areas. This study utilized electronic medical records of pediatric electrocardiograms (ECGs) from high-altitude areas in Yunnan Province, China as research data. An improved genetic algorithm (GA) was employed to find the best combination of base classifiers, and a stacked ensemble approach was utilized to develop a reliable model for automatic diagnosis of pediatric ECGs. The developed model is capable of identifying abnormal ECGs and classifying heart rhythm types into four categories: normal sinus rhythm, sinus tachycardia, sinus bradycardia, and other arrhythmias. The model was tested and compared with commonly used classification methods. The results show that the model developed in this paper exhibits better performance in terms of accuracy, recall, and F1 score. The model's classification effectiveness was further demonstrated by creating a receiver operating characteristic (ROC) curve. Finally, feature importance analysis highlighted the significance heart rate, developmental stage, and QRS complex axis deviation angle in the model.

Original languageEnglish
Article number105506
JournalBiomedical Signal Processing and Control
Volume87
DOIs
StatePublished - Jan 2024

Keywords

  • Abnormal ECGs
  • Automatic diagnosis
  • Children
  • Electrocardiogram (ECG)
  • Genetic algorithm
  • Heart rhythm types
  • High-altitude areas
  • Stacked ensemble

Fingerprint

Dive into the research topics of 'Improved stacked ensemble with genetic algorithm for automatic ECG diagnosis of children living in high-altitude areas'. Together they form a unique fingerprint.

Cite this