Identification of a noncanonical function for ribose-5-phosphate isomerase A promotes colorectal cancer formation by stabilizing and activating β-catenin via a novel C-terminal domain

Yu Ting Chou, Jeng Kai Jiang, Muh Hwa Yang, Jeng Wei Lu, Hua Kuo Lin, Horng Dar Wang, Chiou Hwa Yuh*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

26 Scopus citations

Abstract

Altered metabolism is one of the hallmarks of cancers. Deregulation of ribose-5-phosphate isomerase A (RPIA) in the pentose phosphate pathway (PPP) is known to promote tumorigenesis in liver, lung, and breast tissues. Yet, the molecular mechanism of RPIA-mediated colorectal cancer (CRC) is unknown. Our study demonstrates a noncanonical function of RPIA in CRC. Data from the mRNAs of 80 patients’ CRC tissues and paired nontumor tissues and protein levels, as well as a CRC tissue array, indicate RPIA is significantly elevated in CRC. RPIA modulates cell proliferation and oncogenicity via activation of β-catenin in colon cancer cell lines. Unlike its role in PPP in which RPIA functions within the cytosol, RPIA enters the nucleus to form a complex with the adenomatous polyposis coli (APC) and β-catenin. This association protects β-catenin by preventing its phosphorylation, ubiquitination, and subsequent degradation. The C-terminus of RPIA (amino acids 290 to 311), a region distinct from its enzymatic domain, is necessary for RPIA-mediated tumorigenesis. Consistent with results in vitro, RPIA increases the expression of β-catenin and its target genes, and induces tumorigenesis in gut-specific promotor-carrying RPIA transgenic zebrafish. Together, we demonstrate a novel function of RPIA in CRC formation in which RPIA enters the nucleus and stabilizes β-catenin activity and suggests that RPIA might be a biomarker for targeted therapy and prognosis.

Original languageEnglish
Article numbere2003714
JournalPLOS BIOLOGY
Volume16
Issue number1
DOIs
StatePublished - Jan 2018

Fingerprint

Dive into the research topics of 'Identification of a noncanonical function for ribose-5-phosphate isomerase A promotes colorectal cancer formation by stabilizing and activating β-catenin via a novel C-terminal domain'. Together they form a unique fingerprint.

Cite this