TY - GEN
T1 - High actuation strain in silicone dielectric elastomer actuators with silver electrodes
AU - Low, Sze Hsien
AU - Lau, Gih Keong
PY - 2011/5/17
Y1 - 2011/5/17
N2 - Conductive grease and powder are commonly applied as compliant electrodes for dielectric elastomer actuators (DEAs). Unfortunately, they can be rubbed off easily and DEAs based on them cannot self-heal from localised electrical breakdowns. Metallic thin films are cleaner and more resilient alternatives for electrodes. They are currently widely used in metalized plastic capacitors, which are known for their self-healing capability. However, they are not widely used in DEAs due to limitations in strain. In this paper, we demonstrate that a metalized DEA is capable of areal strains of up to 21%. The inexpensive and simple method of electroless silver deposition had been used to create the electrodes for the single-layer DEA. The lightly pre-stretched 80μm thick dielectric film demonstrated a 21% areal strain, which is a 17% reduction in thickness, with an applied voltage of 2.5kV. Self-healing properties of the silver electrodes have also been observed. Localised breakdowns of the dielectric film self-healed, thereby averting electrical breakdown and allowing actuation to continue, even at higher applied voltages. With higher breakdown voltages, larger breakdown fields were obtained, which would in turn lead to greater electrostatic forces. Relatively high breakdown fields of up to 75 MV/m were obtained. This is in contrast to the 35 MV/m obtained by silver grease under the same conditions. In mechanical strain tests, the silver films remained conductive while subjected to a uni-axial mechanical strain of up to 50%, which ascertains the ability of such electrodes to sustain high strains.
AB - Conductive grease and powder are commonly applied as compliant electrodes for dielectric elastomer actuators (DEAs). Unfortunately, they can be rubbed off easily and DEAs based on them cannot self-heal from localised electrical breakdowns. Metallic thin films are cleaner and more resilient alternatives for electrodes. They are currently widely used in metalized plastic capacitors, which are known for their self-healing capability. However, they are not widely used in DEAs due to limitations in strain. In this paper, we demonstrate that a metalized DEA is capable of areal strains of up to 21%. The inexpensive and simple method of electroless silver deposition had been used to create the electrodes for the single-layer DEA. The lightly pre-stretched 80μm thick dielectric film demonstrated a 21% areal strain, which is a 17% reduction in thickness, with an applied voltage of 2.5kV. Self-healing properties of the silver electrodes have also been observed. Localised breakdowns of the dielectric film self-healed, thereby averting electrical breakdown and allowing actuation to continue, even at higher applied voltages. With higher breakdown voltages, larger breakdown fields were obtained, which would in turn lead to greater electrostatic forces. Relatively high breakdown fields of up to 75 MV/m were obtained. This is in contrast to the 35 MV/m obtained by silver grease under the same conditions. In mechanical strain tests, the silver films remained conductive while subjected to a uni-axial mechanical strain of up to 50%, which ascertains the ability of such electrodes to sustain high strains.
KW - Dielectric elastomer actuator
KW - Electroactive polymer
KW - Electroless deposition
KW - PDMS
KW - Silicone
KW - Silver electrodes
UR - http://www.scopus.com/inward/record.url?scp=79955891084&partnerID=8YFLogxK
U2 - 10.1117/12.880348
DO - 10.1117/12.880348
M3 - Conference contribution
AN - SCOPUS:79955891084
SN - 9780819485380
T3 - Proceedings of SPIE - The International Society for Optical Engineering
BT - Electroactive Polymer Actuators and Devices (EAPAD) 2011
T2 - Electroactive Polymer Actuators and Devices (EAPAD) 2011
Y2 - 7 March 2011 through 10 March 2011
ER -