Heterostructured ferromagnet-topological insulator with dual-phase magnetic properties

Shu Jui Chang, Pei Yu Chuang, Cheong Wei Chong, Yu Jung Chen, Jung Chun Andrew Huang, Po Wen Chen, Yuan-Chieh Tseng*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

11 Scopus citations


The introduction of ferromagnetism at the surface of a topological insulator (TI) produces fascinating spin-charge phenomena. It has been assumed that these fascinating effects are associated with a homogeneous ferromagnetic (FM) layer possessing a single type of magnetic phase. However, we obtained phase separation within the FM layer of a Ni80Fe20/Bi2Se3 heterostructure. This phase separation was caused by the diffusion of Ni into Bi2Se3, forming a ternary magnetic phase of Ni:Bi2Se3. The inward diffusion of Ni led to the formation of an FeSe phase outward, transforming the original Ni80Fe20/Bi2Se3 into a sandwich structure comprising FeSe/Ni:Bi2Se3/Bi2Se3 with dual-phase magnetic characteristics similar to that driven by the proximity effect. Such a phenomenon might have been overlooked in previous studies with a strong focus on the proximity effect. X-ray magnetic spectroscopy revealed that FeSe and Ni:Bi2Se3 possess horizontal and perpendicular magnetic anisotropy, respectively. The overall magnetic order of the heterostructure can be easily tuned by adjusting the thickness of the Bi2Se3 as it compromises the magnetic orders of the two magnetic phases. This discovery is essential to the quantification of spin-charge phenomena in similar material combinations where the FM layer is composed of multiple elements.

Original languageEnglish
Pages (from-to)7785-7791
Number of pages7
JournalRSC Advances
Issue number14
StatePublished - 2018


Dive into the research topics of 'Heterostructured ferromagnet-topological insulator with dual-phase magnetic properties'. Together they form a unique fingerprint.

Cite this