Heteroepitaxial Growth of an Ultrathin β-Ga2O3Film on a Sapphire Substrate Using Mist CVD with Fluid Flow Modeling

Abhay Kumar Mondal, Revathy Deivasigamani, Loh Kean Ping, Muhammad Aniq Shazni Mohammad Haniff, Boon Tong Goh, Ray Hua Horng, Mohd Ambri Mohamed*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

7 Scopus citations

Abstract

β-Gallium oxide (Ga2O3) has received intensive attention in the scientific community as a significant high-power switching semiconductor material because of its remarkable intrinsic physical characteristics and growth stability. This work reports the heteroepitaxial growth of the β-Ga2O3ultrathin film on a sapphire substrate via mist chemical vapor deposition (CVD). This study used a simple solution-processed and nonvacuum mist CVD method to grow a heteroepitaxial β-Ga2O3thin film at 700 °C using a Ga precursor and carrier gases such as argon and oxygen. Various characterization techniques were used to determine the properties of the thin film. Additionally, a computational study was performed to study the temperature distribution and different mist velocity profiles of the finite element mist CVD model. This simulation study is essential for investigating low to high mist velocities over the substrate and applying low velocity to carry out experimental work. XRD and AFM results show that the β-Ga2O3thin film is grown on a sapphire substrate of polycrystalline nature with a smooth surface. HR-TEM measurement and UV-visible transmission spectrometry demonstrated heteroepitaxial β-Ga2O3in an ultrathin film with a band gap of 4.8 eV.

Original languageEnglish
Pages (from-to)41236-41245
Number of pages10
JournalACS Omega
Volume7
Issue number45
DOIs
StatePublished - 15 Nov 2022

Fingerprint

Dive into the research topics of 'Heteroepitaxial Growth of an Ultrathin β-Ga2O3Film on a Sapphire Substrate Using Mist CVD with Fluid Flow Modeling'. Together they form a unique fingerprint.

Cite this