GSVNET: GUIDED SPATIALLY-VARYING CONVOLUTION FOR FAST SEMANTIC SEGMENTATION ON VIDEO

Shih Po Lee, Si Cun Chen, Wen Hsiao Peng

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

13 Scopus citations

Abstract

This paper addresses fast semantic segmentation on video. Video segmentation often calls for real-time, or even faster than real-time, processing. One common recipe for conserving computation arising from feature extraction is to propagate features of few selected keyframes. However, recent advances in fast image segmentation make these solutions less attractive. To leverage fast image segmentation for furthering video segmentation, we propose a simple yet efficient propagation framework. Specifically, we perform lightweight flow estimation in 1/8-downscaled image space for temporal warping in segmentation outpace space. Moreover, we introduce a guided spatially-varying convolution for fusing segmentations derived from the previous and current frames, to mitigate propagation error and enable lightweight feature extraction on non-keyframes. Experimental results on Cityscapes and CamVid show that our scheme achieves the state-of-the-art accuracy-throughput trade-off on video segmentation.

Original languageEnglish
Title of host publication2021 IEEE International Conference on Multimedia and Expo, ICME 2021
PublisherIEEE Computer Society
ISBN (Electronic)9781665438643
DOIs
StatePublished - 2021
Event2021 IEEE International Conference on Multimedia and Expo, ICME 2021 - Shenzhen, China
Duration: 5 Jul 20219 Jul 2021

Publication series

NameProceedings - IEEE International Conference on Multimedia and Expo
ISSN (Print)1945-7871
ISSN (Electronic)1945-788X

Conference

Conference2021 IEEE International Conference on Multimedia and Expo, ICME 2021
Country/TerritoryChina
CityShenzhen
Period5/07/219/07/21

Keywords

  • Video semantic segmentation
  • dynamic filters

Fingerprint

Dive into the research topics of 'GSVNET: GUIDED SPATIALLY-VARYING CONVOLUTION FOR FAST SEMANTIC SEGMENTATION ON VIDEO'. Together they form a unique fingerprint.

Cite this