Golay-Correlator Window-Based Noise Cancellation Equalization Technique for 60-GHz Wireless OFDM/SC Receiver

Chih Feng Wu, Wei Chang Liu, Chia Chun Tsui, Chun Yi Liu, Meng Siou Sie, Shyh-Jye Jou

Research output: Contribution to journalArticlepeer-review

10 Scopus citations


In this paper, a Golay-correlator window-based noise cancellation (GC-WNC) technique with frequency-domain equalizer (FDE) is proposed. The GC-WNC is a cooperative scheme in the time and frequency domains to combat the multipath effect in nonline-of-sight (NLOS) and LOS channels for orthogonal frequency-division multiplexing (OFDM) and single-carrier mode baseband inner receiver over 60-GHz environment for IEEE 802.15.3c and 802.11ad. According to mean-square error criterion, WNC approach is to minimize the estimation error between the ideal and the estimated channel frequency response (CFR) on each subchannel. The CFR is precisely obtained as coefficients of FDE to compensate multipath effect even in NLOS channel. The GC-WNC FDE with 8X-parallelism is designed as a part of digital baseband inner receiver with 40-nm CMOS general-purpose process. Because of area restriction of tape-out chip, only the OFDM mode is fabricated in the chip. The GC-WNC FDE has an equivalent gate count of 230k occupying 11.3% of the baseband inner receiver. Based on the chip measurement results, the baseband inner receiver with GC-WNC FDE provides 24-Gb/s throughput with 500-MHz operating clock and 0.94 V supply voltage. The power consumption of GC-WNC FDE is 69.79 mW. The baseband inner receiver with GC-WNC FDE can deliver a multigigabit per second throughput with the power dissipation of 2.91/2.26 mW/Gb/s at 500-/330-MHz operating clock for the OFDM mode.

Original languageEnglish
Article number7460982
Pages (from-to)3323-3333
Number of pages11
JournalIEEE Transactions on Very Large Scale Integration (VLSI) Systems
Issue number11
StatePublished - Nov 2016


  • Frequency-domain equalizer (FDE)
  • orthogonal frequency-division multiplexing (OFDM)
  • single carrier (SC)


Dive into the research topics of 'Golay-Correlator Window-Based Noise Cancellation Equalization Technique for 60-GHz Wireless OFDM/SC Receiver'. Together they form a unique fingerprint.

Cite this