Abstract
The resonance between an electronic transition of a micro/nanoscale object and an incident photon flux can modify the radiation force exerted on that object, especially at an interface. It has been theoretically proposed that a non-linear stimulated emission process can also induce an optical force, however its direction will be opposite to conventional photon scattering/absorption processes. In this work, we experimentally and theoretically demonstrate that a stimulated emission process can induce a repulsive pulling optical force on a single trapped dye-doped particle. Moreover, we successfully integrate both attractive pushing (excited state absorption) and repulsive pulling (stimulated emission) resonance forces to control the overall exerted optical force on an object, validating the proposed non-linear optical resonance theory. Indeed, the results presented here will enable the optical manipulation of the exerted optical force with exquisite control and ultimately enable single particle manipulation.
Original language | English |
---|---|
Pages (from-to) | 10087-10095 |
Number of pages | 9 |
Journal | Chemical Science |
Volume | 14 |
Issue number | 37 |
DOIs | |
State | Published - 22 Aug 2023 |