TY - JOUR
T1 - Fully automated tissue segmentation of the prescription isodose region delineated through the Gamma knife plan for cerebral arteriovenous malformation (AVM) using fuzzy C-means (FCM) clustering
AU - Peng, Syu Jyun
AU - Lee, Cheng chia
AU - Wu, Hsiu Mei
AU - Lin, Chung Jung
AU - Shiau, Cheng Ying
AU - Guo, Wan Yuo
AU - Pan, David Hung Chi
AU - Liu, Kang Du
AU - Chung, Wen Yuh
AU - Yang, Huai Che
N1 - Publisher Copyright:
© 2018 The Authors
PY - 2019/1/1
Y1 - 2019/1/1
N2 - Background: Gamma knife radiosurgery (GKRS) is a common treatment for cerebral arterio-venous malformations (AVMs), particularly in cases where the malformation is deep-seated, large, or in eloquent areas of the brain. Unfortunately, these procedures can result in radiation injury to brain parenchyma. The fact that every AVM is unique in its vascular morphology makes it nearly impossible to exclude brain parenchyma from isodose radiation exposure during the formulation of a GKRS plan. Calculating the percentages of the various forms of tissue exposed to specific doses of radiation is crucial to understanding the clinical responses and causes of brain parenchyma injury following GKRS for AVM. Methods: In this study, we developed a fully automated algorithm using unsupervised classification via fuzzy c-means clustering for the analysis of T2 weighted images used in a Gamma knife plan. This algorithm is able to calculate the percentages of nidus, brain tissue, and cerebrospinal fluid (CSF) within the prescription isodose radiation exposure region. Results: The proposed algorithm was used to assess the treatment plan of 25 patients with AVM who had undergone GKRS. The Dice similarity index (SI) was used to determine the degree of agreement between the results obtained using the algorithm and a visually guided manual method (the gold standard) performed by an experienced neurosurgeon. In the nidus, the SI was (74.86 ± 1.30%) (mean ± standard deviation), the sensitivity was (83.05 ± 11.91)%, and the specificity was (86.73 ± 10.31)%. In brain tissue, the SI was (79.50 ± 6.01)%, the sensitivity was (73.05 ± 9.77)%, and the specificity was (85.53 ± 7.13)%. In the CSF, the SI was (69.57 ± 15.26)%, the sensitivity was (89.86 ± 5.87)%, and the specificity was (92.36 ± 4.35)%. Conclusions: The proposed clustering algorithm provides precise percentages of the various types of tissue within the prescription isodose region in the T2 weighted images used in the GKRS plan for AVM. Our results shed light on the causes of brain radiation injury after GKRS for AVM. In the future, this system could be used to improve outcomes and avoid complications associated with GKRS treatment.
AB - Background: Gamma knife radiosurgery (GKRS) is a common treatment for cerebral arterio-venous malformations (AVMs), particularly in cases where the malformation is deep-seated, large, or in eloquent areas of the brain. Unfortunately, these procedures can result in radiation injury to brain parenchyma. The fact that every AVM is unique in its vascular morphology makes it nearly impossible to exclude brain parenchyma from isodose radiation exposure during the formulation of a GKRS plan. Calculating the percentages of the various forms of tissue exposed to specific doses of radiation is crucial to understanding the clinical responses and causes of brain parenchyma injury following GKRS for AVM. Methods: In this study, we developed a fully automated algorithm using unsupervised classification via fuzzy c-means clustering for the analysis of T2 weighted images used in a Gamma knife plan. This algorithm is able to calculate the percentages of nidus, brain tissue, and cerebrospinal fluid (CSF) within the prescription isodose radiation exposure region. Results: The proposed algorithm was used to assess the treatment plan of 25 patients with AVM who had undergone GKRS. The Dice similarity index (SI) was used to determine the degree of agreement between the results obtained using the algorithm and a visually guided manual method (the gold standard) performed by an experienced neurosurgeon. In the nidus, the SI was (74.86 ± 1.30%) (mean ± standard deviation), the sensitivity was (83.05 ± 11.91)%, and the specificity was (86.73 ± 10.31)%. In brain tissue, the SI was (79.50 ± 6.01)%, the sensitivity was (73.05 ± 9.77)%, and the specificity was (85.53 ± 7.13)%. In the CSF, the SI was (69.57 ± 15.26)%, the sensitivity was (89.86 ± 5.87)%, and the specificity was (92.36 ± 4.35)%. Conclusions: The proposed clustering algorithm provides precise percentages of the various types of tissue within the prescription isodose region in the T2 weighted images used in the GKRS plan for AVM. Our results shed light on the causes of brain radiation injury after GKRS for AVM. In the future, this system could be used to improve outcomes and avoid complications associated with GKRS treatment.
KW - Cerebral Arterio-Venous Malformation
KW - Fuzzy c-means clustering
KW - Gamma knife radiosurgery
KW - Radiation side-effect
KW - Radiotherapy
UR - http://www.scopus.com/inward/record.url?scp=85057087250&partnerID=8YFLogxK
U2 - 10.1016/j.nicl.2018.11.018
DO - 10.1016/j.nicl.2018.11.018
M3 - Article
C2 - 30497981
AN - SCOPUS:85057087250
SN - 2213-1582
VL - 21
JO - NeuroImage: Clinical
JF - NeuroImage: Clinical
M1 - 101608
ER -