FOX-NAS: Fast, On-device and Explainable Neural Architecture Search

Chia Hsiang Liu, Yu Shin Han, Yuan Yao Sung, Yi Lee, Hung Yueh Chiang, Kai Chiang Wu

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

9 Scopus citations

Abstract

Neural architecture search can discover neural networks with good performance, and One-Shot approaches are prevalent. One-Shot approaches typically require a supernet with weight sharing and predictors that predict the performance of architecture. However, the previous methods take much time to generate performance predictors thus are inefficient. To this end, we propose FOX-NAS that consists of fast and explainable predictors based on simulated annealing and multivariate regression. Our method is quantization-friendly and can be efficiently deployed to the edge. The experiments on different hardware show that FOX-NAS models outperform some other popular neural network architectures. For example, FOX-NAS matches MobileNetV2 and EfficientNet-Lite0 accuracy with 240% and 40% less latency on the edge CPU. Search code and pre-trained models are released at https://github.com/great8nctu/FOX-NAS.1

Original languageEnglish
Title of host publicationProceedings - 2021 IEEE/CVF International Conference on Computer Vision Workshops, ICCVW 2021
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages789-797
Number of pages9
ISBN (Electronic)9781665401913
DOIs
StatePublished - 2021
Event18th IEEE/CVF International Conference on Computer Vision Workshops, ICCVW 2021 - Virtual, Online, Canada
Duration: 11 Oct 202117 Oct 2021

Publication series

NameProceedings of the IEEE International Conference on Computer Vision
Volume2021-October
ISSN (Print)1550-5499

Conference

Conference18th IEEE/CVF International Conference on Computer Vision Workshops, ICCVW 2021
Country/TerritoryCanada
CityVirtual, Online
Period11/10/2117/10/21

Fingerprint

Dive into the research topics of 'FOX-NAS: Fast, On-device and Explainable Neural Architecture Search'. Together they form a unique fingerprint.

Cite this