TY - JOUR
T1 - Formation and infrared identification of protonated fluoranthene isomers 3-, 9-, and 10-C16H11+ in solid
T2 - Para -H2
AU - Chakraborty, Arghya
AU - Lee, Yuan-Pern
N1 - Publisher Copyright:
© 2018 the Owner Societies.
PY - 2018/12/27
Y1 - 2018/12/27
N2 - Polycyclic aromatic hydrocarbons (PAH) and their derivatives are prospective carriers of unidentified infrared (UIR) emission features observed in interstellar media. Fluoranthene (C16H10) is a simple planar PAH with five- and six-membered rings; it can be considered as a fragment of C60, which, along with its cationic counterpart, has been identified in interstellar media. Protonated fluoranthene, C16H11+, was generated upon electron bombardment during deposition at 3.2 K of p-H2 containing fluoranthene in a small proportion. The intensities of infrared features of C16H11+ decreased after maintaining the matrix in darkness because of its neutralization with trapped electrons. According to the correlations in intensities upon neutralization and secondary photolysis, observed lines were classified into three groups which are assigned to isomers 3-C16H11+, 9-C16H11+, and 10-C16H11+. Experimental vibrational wavenumbers and relative IR intensities of the features agree with corresponding calculated values predicted for these three isomers of C16H11+ with the B3PW91/6-311++G(2d,2p) method. 3-C16H11+ and 9-C16H11+ are predicted to have the lowest energy (within 5 kJ mol-1), whereas 10- and 1-C16H11+ are lying above the global minimum 3-C16H11+ by ∼20 kJ mol-1. However, definitive identification of 1-C16H11+ could not be made as only the most intense line is tentatively assigned. Although the observed spectra of these isomers match unsatisfactorily with the UIR bands, they will facilitate the potential terrestrial and extraterrestrial identification of these species.
AB - Polycyclic aromatic hydrocarbons (PAH) and their derivatives are prospective carriers of unidentified infrared (UIR) emission features observed in interstellar media. Fluoranthene (C16H10) is a simple planar PAH with five- and six-membered rings; it can be considered as a fragment of C60, which, along with its cationic counterpart, has been identified in interstellar media. Protonated fluoranthene, C16H11+, was generated upon electron bombardment during deposition at 3.2 K of p-H2 containing fluoranthene in a small proportion. The intensities of infrared features of C16H11+ decreased after maintaining the matrix in darkness because of its neutralization with trapped electrons. According to the correlations in intensities upon neutralization and secondary photolysis, observed lines were classified into three groups which are assigned to isomers 3-C16H11+, 9-C16H11+, and 10-C16H11+. Experimental vibrational wavenumbers and relative IR intensities of the features agree with corresponding calculated values predicted for these three isomers of C16H11+ with the B3PW91/6-311++G(2d,2p) method. 3-C16H11+ and 9-C16H11+ are predicted to have the lowest energy (within 5 kJ mol-1), whereas 10- and 1-C16H11+ are lying above the global minimum 3-C16H11+ by ∼20 kJ mol-1. However, definitive identification of 1-C16H11+ could not be made as only the most intense line is tentatively assigned. Although the observed spectra of these isomers match unsatisfactorily with the UIR bands, they will facilitate the potential terrestrial and extraterrestrial identification of these species.
UR - http://www.scopus.com/inward/record.url?scp=85060380937&partnerID=8YFLogxK
U2 - 10.1039/c8cp05849k
DO - 10.1039/c8cp05849k
M3 - Article
C2 - 30628616
AN - SCOPUS:85060380937
SN - 1463-9076
VL - 21
SP - 1820
EP - 1829
JO - Physical Chemistry Chemical Physics
JF - Physical Chemistry Chemical Physics
IS - 4
ER -