First Demonstration of Ferroelectric Tunnel Thin-Film Transistor Nonvolatile Memory With Polycrystalline-Silicon Channel and HfZrO Gate Dielectric

William Cheng Yu Ma*, Chun Jung Su, Kuo Hsing Kao, Yao Jen Lee, Ju Heng Lin, Pin Hua Wu, Jui Che Chang, Cheng Lun Yen, Hsin Chun Tseng, Hsu Tang Liao, Yu Wen Chou, Min Yu Chiu, Yan Qing Chen

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

4 Scopus citations

Abstract

In this work, the nonvolatile memory constructed on the tunnel thin-film transistors (tunnel-TFTs) using polycrystalline-silicon channel featuring ferroelectric HfZrOx layer is demonstrated for the first time. When the pulse voltages of program (PG) and erase (ER) are, respectively, 3.5 and -2 V with the pulsewidth of $1 ~\mu \text{s}$ , the threshold voltage modulation amount of the ferroelectric tunnel-TFT can reach -0.524 and 0.496 V, respectively. In addition, the endurance behaviors of the ferroelectric tunnel-TFT exhibit a strong PG/ER pulsewidth dependence. The wake-up effect of the ferroelectric layer becomes more pronounced as increasing the PG/ER pulsewidth. Moreover, the increase of the PG/ER pulsewidth also causes the ferroelectric tunnel-TFT to be subjected to the electrical dynamic stress effect, leading to the degradation of the subthreshold swing (SS) and the electron trapping effect. When the pulsewidth is 100 ns, the endurance is mainly dominated by the fatigue effect of the ferroelectric layer and the degradation of the SS. When the pulsewidth increases to $1 ~\mu \text{s}$ , the endurance is mainly dominated by the electron trapping effect of the ferroelectric layer in addition to the fatigue effect. The retention of the ferroelectric tunnel-TFT exhibits stable behavior at 50 °C. Consequently, the ferroelectric tunnel-TFT exhibits sufficient electrical performance and can be integrated with display panels and various sensor systems on smart wearable devices for edge computing applications.

Original languageEnglish
Pages (from-to)6072-6077
Number of pages6
JournalIEEE Transactions on Electron Devices
Volume69
Issue number11
DOIs
StatePublished - 1 Nov 2022

Keywords

  • Ferroelectric transistor
  • nonvolatile memory (NVM)
  • polycrystalline-silicon (poly-Si) channel
  • thin-film transistor (TFT)
  • tunnel transistor

Fingerprint

Dive into the research topics of 'First Demonstration of Ferroelectric Tunnel Thin-Film Transistor Nonvolatile Memory With Polycrystalline-Silicon Channel and HfZrO Gate Dielectric'. Together they form a unique fingerprint.

Cite this