Ferroelectric characterization in ultrathin Hf0.5Zr0.5O2 MFIS capacitors by piezoresponse force microscopy (PFM) in vacuum

Cheng Hung Wu, Artur Useinov*, Tian Li Wu, Chun Jung Su

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Ferroelectric HfO2-doped compounds, which are well-known CMOS compatible dielectric materials, have the promising applications in memory, logic and neuromorphic devices [1]. Based on typical metal ferroelectric insulator semiconductor (MFIS) capacitor structure with the sub-5nm ferroelectric layer, the ferroelectric characterization becomes the challenge since the presence of tunneling leakage or screening effects from surface charge traps dramatically reduce the signal to noise ratio. Since the devices obtain a weak signal from polarization (P) itself, this leads to the complicated evaluation of ferroelectric properties of such ultrathin layers [2]-[3]. In this study, we fabricated 5 nm and 2 nm Hf0.5Zr0.5O2 (HZO) MFIS capacitors and demonstrate alternative vacuum-based piezoresponse force microscopy (PFM) characterization, which is still enables to see P-response in ultrathin films due to increased quality factor of the tip-surface resonance. Electrical measurements such as polarization-voltage (P-V) and capacitance-voltage (C-V) characterristics gives additional information about remnant and saturated polarizations: Pr and Ps, respectively.

Original languageEnglish
Title of host publicationVLSI-TSA 2021 - 2021 International Symposium on VLSI Technology, Systems and Applications, Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1-2
Number of pages2
ISBN (Electronic)9781665419345
DOIs
StatePublished - 19 Apr 2021
Event2021 International Symposium on VLSI Technology, Systems and Applications, VLSI-TSA 2021 - Hsinchu, Taiwan
Duration: 19 Apr 202122 Apr 2021

Publication series

NameVLSI-TSA 2021 - 2021 International Symposium on VLSI Technology, Systems and Applications, Proceedings

Conference

Conference2021 International Symposium on VLSI Technology, Systems and Applications, VLSI-TSA 2021
Country/TerritoryTaiwan
CityHsinchu
Period19/04/2122/04/21

Fingerprint

Dive into the research topics of 'Ferroelectric characterization in ultrathin Hf0.5Zr0.5O2 MFIS capacitors by piezoresponse force microscopy (PFM) in vacuum'. Together they form a unique fingerprint.

Cite this