FDoF: Enhancing Channel Utilization for 802.11ac

Chi Han Lin, Yi Ting Chen, Ching-Ju Lin*, Wen Tsuen Chen

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

6 Scopus citations


Multi-user multiple input multiple output (MU-MIMO) enables a multi-antenna access point to serve multiple users simultaneously, and has been adopted as the IEEE 802.11ac standard. While several PHY-MAC designs have recently been proposed to improve the throughput performance of a MU-MIMO WLAN, they, however, usually assume that all the concurrent streams are of roughly equal length. In reality, users usually have frames with heterogeneous lengths even after aggregation, leading to different lengths of a transmission time. Hence, the concurrent transmission opportunities might not always be fully utilized when some streams finish earlier than the others in a transmission opportunity. To resolve this inefficiency, this paper presents full degree-of-freedom (FDoF), a PHY-MAC design that exploits a novel power allocation scheme to reduce the idle channel time and further leverages frame padding to better utilize the spatial multiplexing gain. Unlike traditional MIMO power allocation, which aims at maximizing the theoretical sum-rate, FDoF's power allocation explicitly considers heterogeneous frame lengths and minimizes the channel time required to finish concurrent frames, as a result improving the effective throughput. FDoF's padding protocol then identifies proper users to reuse the remaining idle channel time, while preventing this padding from harming all the ongoing streams. Our evaluation via large-scale trace-driven simulations demonstrates that FDoF's improves the throughput by up to 2.83× , or by 1.36× on average, as compared to the conventional 802.11ac. By combining FDoF's power allocation with frame padding, the average throughput gain can be further increased to 1.75× .

Original languageEnglish
Pages (from-to)465-477
Number of pages13
JournalIEEE/ACM Transactions on Networking
Issue number1
StatePublished - Feb 2018


  • MIMO
  • Wireless LAN
  • access protocol


Dive into the research topics of 'FDoF: Enhancing Channel Utilization for 802.11ac'. Together they form a unique fingerprint.

Cite this