TY - GEN
T1 - Extreme load computational fluid dynamics analysis and verification for a multibody wave energy converter
AU - Van Rij, Jennifer
AU - Yu, Yi-Hsiang
AU - McCall, Alan
AU - Coe, Ryan G.
N1 - Publisher Copyright:
© 2019 American Society of Mechanical Engineers (ASME). All rights reserved.
PY - 2019
Y1 - 2019
N2 - A wave energy converter (WEC) must be designed to survive the extreme sea states that it will be subject to throughout its lifetime. Although there are many analysis methods and codes available to accomplish this, there are currently several engineering challenges to WEC survival design. Foremost, the computational design approach will typically involve a trade-off between accuracy and computational efficiency. Additionally, most computational fluid dynamics (CFD) codes are not ideally suited to modeling extreme events for WECs with multibody dynamics, power-take-off systems, and mooring systems. Finally, although WEC design standards and CFD guidelines are emerging, with the current immaturity of the WEC industry, they are not yet well established. In this study, loads on a 1:35-scale, moored, multibody WEC are evaluated with CFD. The CFD results are compared with results obtained from a computationally efficient, midfidelity model based on linearized potential flow hydrodynamics. For these model verification comparisons, both operational and survival configurations are considered. The extreme load results obtained, using both codes, indicate that the survival configuration successfully sheds loads during extreme sea states. It is also found that WEC-Sim, when appropriately applied, can provide reasonable load results, at a fraction of the computational expense of CFD. However, for the more extreme sea states, and for higher-order effects not included in the WEC-Sim model, the linear-based results have significant errors in comparison to the CFD-based results, and should be used judiciously.
AB - A wave energy converter (WEC) must be designed to survive the extreme sea states that it will be subject to throughout its lifetime. Although there are many analysis methods and codes available to accomplish this, there are currently several engineering challenges to WEC survival design. Foremost, the computational design approach will typically involve a trade-off between accuracy and computational efficiency. Additionally, most computational fluid dynamics (CFD) codes are not ideally suited to modeling extreme events for WECs with multibody dynamics, power-take-off systems, and mooring systems. Finally, although WEC design standards and CFD guidelines are emerging, with the current immaturity of the WEC industry, they are not yet well established. In this study, loads on a 1:35-scale, moored, multibody WEC are evaluated with CFD. The CFD results are compared with results obtained from a computationally efficient, midfidelity model based on linearized potential flow hydrodynamics. For these model verification comparisons, both operational and survival configurations are considered. The extreme load results obtained, using both codes, indicate that the survival configuration successfully sheds loads during extreme sea states. It is also found that WEC-Sim, when appropriately applied, can provide reasonable load results, at a fraction of the computational expense of CFD. However, for the more extreme sea states, and for higher-order effects not included in the WEC-Sim model, the linear-based results have significant errors in comparison to the CFD-based results, and should be used judiciously.
KW - Computation fluid dynamics
KW - Extreme/design loads
KW - Wave energy converter
UR - http://www.scopus.com/inward/record.url?scp=85075875946&partnerID=8YFLogxK
U2 - 10.1115/omae2019-96397
DO - 10.1115/omae2019-96397
M3 - Conference contribution
AN - SCOPUS:85075875946
T3 - Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE
BT - Ocean Renewable Energy
PB - American Society of Mechanical Engineers (ASME)
T2 - ASME 2019 38th International Conference on Ocean, Offshore and Arctic Engineering, OMAE 2019
Y2 - 9 June 2019 through 14 June 2019
ER -