Extraction of microRNA-target interaction sentences from biomedical literature by deep learning approach

Mengqi Luo, Shangfu Li, Yuxuan Pang, Lantian Yao, Renfei Ma, Hsi Yuan Huang, Hsien Da Huang*, Tzong Yi Lee*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

4 Scopus citations

Abstract

MicroRNA (miRNA)-target interaction (MTI) plays a substantial role in various cell activities, molecular regulations and physiological processes. Published biomedical literature is the carrier of high-confidence MTI knowledge. However, digging out this knowledge in an efficient manner from large-scale published articles remains challenging. To address this issue, we were motivated to construct a deep learning-based model. We applied the pre-trained language models to biomedical text to obtain the representation, and subsequently fed them into a deep neural network with gate mechanism layers and a fully connected layer for the extraction of MTI information sentences. Performances of the proposed models were evaluated using two datasets constructed on the basis of text data obtained from miRTarBase. The validation and test results revealed that incorporating both PubMedBERT and SciBERT for sentence level encoding with the long short-term memory (LSTM)-based deep neural network can yield an outstanding performance, with both F1 and accuracy being higher than 80% on validation data and test data. Additionally, the proposed deep learning method outperformed the following machine learning methods: random forest, support vector machine, logistic regression and bidirectional LSTM. This work would greatly facilitate studies on MTI analysis and regulations. It is anticipated that this work can assist in large-scale screening of miRNAs, thereby revealing their functional roles in various diseases, which is important for the development of highly specific drugs with fewer side effects.

Original languageEnglish
Article numberbbac497
JournalBriefings in Bioinformatics
Volume24
Issue number1
DOIs
StatePublished - 1 Jan 2023

Keywords

  • deep learning
  • language models
  • microRNA (miRNA)-target interaction
  • semantic encoding

Fingerprint

Dive into the research topics of 'Extraction of microRNA-target interaction sentences from biomedical literature by deep learning approach'. Together they form a unique fingerprint.

Cite this