Exploiting spatial relation for reducing distortion in style transfer

Jia Ren Chang, Yong Sheng Chen

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Scopus citations

Abstract

The power of convolutional neural networks in arbitrary style transfer has been amply demonstrated; however, existing stylization methods tend to generate spatially inconsistent results with noticeable artifacts. One solution to this problem involves the application of a segmentation mask or affinity-based image matting to preserve spatial information related to image content. The main idea of this work is to model spatial relation between content image pixels and thus to maintain this relationship in stylization for reducing artifacts. The proposed network architecture is called spatial relation-augmented VGG (SRVGG), in which long-range spatial dependency is modeled by a spatial relation module. Based on this spatial information extracted from SRVGG, we design a novel relation loss which can minimize the difference of spatial dependency between content images and stylizations. We evaluate the proposed framework on both optimization-based and feedforward-based style transfer methods. The effectiveness of SRVGG in stylization is demonstrated by generating stylized images of high quality and spatial consistency without the need for segmentation masks or affinity-based image matting. The quantitative evaluation also suggests that the proposed framework achieve better performance compared with other methods.

Original languageEnglish
Title of host publicationProceedings - 2021 IEEE Winter Conference on Applications of Computer Vision, WACV 2021
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1209-1217
Number of pages9
ISBN (Electronic)9780738142661
DOIs
StatePublished - Jan 2021
Event2021 IEEE Winter Conference on Applications of Computer Vision, WACV 2021 - Virtual, Online, United States
Duration: 5 Jan 20219 Jan 2021

Publication series

NameProceedings - 2021 IEEE Winter Conference on Applications of Computer Vision, WACV 2021

Conference

Conference2021 IEEE Winter Conference on Applications of Computer Vision, WACV 2021
Country/TerritoryUnited States
CityVirtual, Online
Period5/01/219/01/21

Fingerprint

Dive into the research topics of 'Exploiting spatial relation for reducing distortion in style transfer'. Together they form a unique fingerprint.

Cite this