TY - GEN
T1 - Experimental Study on Microfluidic Mixing with Trapezoidal Obstacles in a 1000-Fold Span of Reynolds Number
AU - Lin, Xin Yu
AU - Ito, Hiroaki
AU - Kaneko, Makoto
AU - Tsai, Chia-Hung
PY - 2019/11
Y1 - 2019/11
N2 - Mixing is important for microfluidic systems and placing obstacles in a flow path for generating advection, or splitting/recombination flows, is a very popular method for enhancing the mixing. In this paper, we present experimental investigations on such microfluidic mixing with four different shapes of trapezoidal obstacles and tested them in a 1000-fold span of Reynolds number (Re). The obstacles have four different base ratios 1, 3, 6 and 9, which indicate the ratios between the upper and lower bases of a trapezoid. Two different dyes, yellow and blue, were used for visualizing and evaluating the performance of mixing. The results show that, when the base ratio is 1, the mixing surprisingly becomes worse with the increase of the flowrate. When the ratio is 3 or 6, the mixing performance is first reduced with the increase of Re and then went through a transition around Re of 10 before it rapidly increases. When the ratio is 9, two transition points were found around Re of 10 and 100, respectively. The work provides useful information for realizing shape-dependent mixing performance, as well as for developing an intelligent lab-on-a-chip system.
AB - Mixing is important for microfluidic systems and placing obstacles in a flow path for generating advection, or splitting/recombination flows, is a very popular method for enhancing the mixing. In this paper, we present experimental investigations on such microfluidic mixing with four different shapes of trapezoidal obstacles and tested them in a 1000-fold span of Reynolds number (Re). The obstacles have four different base ratios 1, 3, 6 and 9, which indicate the ratios between the upper and lower bases of a trapezoid. Two different dyes, yellow and blue, were used for visualizing and evaluating the performance of mixing. The results show that, when the base ratio is 1, the mixing surprisingly becomes worse with the increase of the flowrate. When the ratio is 3 or 6, the mixing performance is first reduced with the increase of Re and then went through a transition around Re of 10 before it rapidly increases. When the ratio is 9, two transition points were found around Re of 10 and 100, respectively. The work provides useful information for realizing shape-dependent mixing performance, as well as for developing an intelligent lab-on-a-chip system.
UR - http://www.scopus.com/inward/record.url?scp=85081158095&partnerID=8YFLogxK
U2 - 10.1109/IROS40897.2019.8967691
DO - 10.1109/IROS40897.2019.8967691
M3 - Conference contribution
AN - SCOPUS:85081158095
T3 - IEEE International Conference on Intelligent Robots and Systems
SP - 2441
EP - 2446
BT - 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2019
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2019
Y2 - 3 November 2019 through 8 November 2019
ER -