Error Rate Analysis for Random Linear Streaming Codes in the Finite Memory Length Regime

Pin Wen Su, Yu Chih Huang, Shih Chun Lin, I. Hsiang Wang, Chih Chun Wang

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

6 Scopus citations

Abstract

Streaming codes encode a string of source packets and output a string of coded packets in real time, which eliminate the queueing delay of block coding and are thus especially suitable for delay-sensitive applications. This work studies random linear streaming codes (RLSCs) and i.i.d. packet erasure channels. While existing works focused on the asymptotic error-exponent analyses, this work characterizes the error rate in the finite memory length regime and the contributions include: (i) A new information-debt-based description of the error event; (ii) A matrix-based characterization of the error rate; (iii) A closed-form approximation of the error rate that is provably tight for large memory lengths; and (iv) A new Markov-chainbased analysis framework, which can be of independent research interest. Numerical results show that the approximation, i.e. (iii), closely matches the exact error rate even for small memory length (≈ 20). The results can be viewed as a sequential- coding counterpart of the finite length analysis of block coding [Polyanskiy et al. 10] under the specialized setting of RLSCs.

Original languageEnglish
Title of host publication2020 IEEE International Symposium on Information Theory, ISIT 2020 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages491-496
Number of pages6
ISBN (Electronic)9781728164328
DOIs
StatePublished - Jun 2020
Event2020 IEEE International Symposium on Information Theory, ISIT 2020 - Los Angeles, United States
Duration: 21 Jul 202026 Jul 2020

Publication series

NameIEEE International Symposium on Information Theory - Proceedings
Volume2020-June
ISSN (Print)2157-8095

Conference

Conference2020 IEEE International Symposium on Information Theory, ISIT 2020
Country/TerritoryUnited States
CityLos Angeles
Period21/07/2026/07/20

Fingerprint

Dive into the research topics of 'Error Rate Analysis for Random Linear Streaming Codes in the Finite Memory Length Regime'. Together they form a unique fingerprint.

Cite this