Environmental-sensitive micelles based on poly(2-ethyl-2-oxazoline)-b-poly(l-lactide) diblock copolymer for application in drug delivery

Ging Ho Hsiue*, Chun Hung Wang, Chun Liang Lo, Chau Hui Wang, Ju Pi Li, Jia Ling Yang

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

99 Scopus citations

Abstract

Anticancer drug doxorubicin (DOX) was physically loaded into the micelles prepared from poly(2-ethyl-2-oxazoline)-b-poly(l-lactide) diblock copolymers (PEOz-PLLA). PEOz-PLLA consists of hydrophilic segment PEOz and hydrophobic segment PLLA showed pH-sensitivity in the aqueous solution. The DOX-loaded micelle exhibited a narrow size distribution with a mean diameter around 170 nm. The micellar structure can preserve hydrophobic drug DOX under the physiological condition (pH 7.4) and selectively release DOX by sensing the intracellular pH change in late endosomes and secondary lysosomes (pH 4-5). At 37 °C, the cumulated released rate of DOX from micelles was about 65% at pH 5.0 in the initial 24 h. Additionally, polymeric micelles had low cytotoxicity in human normal fibroblast HFW cells for 72 h by using MTT assay. Moreover, DOX-loaded micelles could slowly and efficiency decrease cell viability of non-small-cell lung carcinoma CL3 cells. Taken together, PEOz-b-PLLA diblock polymeric micelles may act as useful drug carriers for cancer therapy.

Original languageEnglish
Pages (from-to)69-75
Number of pages7
JournalInternational Journal of Pharmaceutics
Volume317
Issue number1
DOIs
StatePublished - 6 Jul 2006

Keywords

  • Diblock copolymers
  • Drug delivery
  • Poly(2-ethyl-2-oxazoline) (PEOz)
  • Poly(l-lactide) (PLLA)
  • Polymeric micelle

Fingerprint

Dive into the research topics of 'Environmental-sensitive micelles based on poly(2-ethyl-2-oxazoline)-b-poly(l-lactide) diblock copolymer for application in drug delivery'. Together they form a unique fingerprint.

Cite this