Enhancing text classification with the Universum

Chien-Liang Liu, Ching Hsien Lee

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

2 Scopus citations

Abstract

The Universum is a data set that shares the same domain as the target problem, but does not comprise any category of interest. Recently, the concept of inference through contradictions has shown that the Universum provides a means for machine learning algorithms to encode prior knowledge into the model to improve performance. This work investigates whether text classification algorithms can benefit from the Universum when one has only a few labeled examples at hand. Additionally, this work proposes a confidence scheme to incorporate Universum into the learning process, and further devises a learning with Universum algorithm called Universum logistic regression (U-LR). The confidence scheme provides another means for machine learning algorithms to incorporate Universum into learning process. We conduct experiments on three data sets with several combinations. The experimental results indicate that the proposed method outperforms the other learning with Universum methods.

Original languageEnglish
Title of host publication2016 12th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery, ICNC-FSKD 2016
EditorsJiayi Du, Chubo Liu, Kenli Li, Lipo Wang, Zhao Tong, Maozhen Li, Ning Xiong
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1147-1153
Number of pages7
ISBN (Electronic)9781509040933
DOIs
StatePublished - 19 Oct 2016
Event12th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery, ICNC-FSKD 2016 - Changsha, China
Duration: 13 Aug 201615 Aug 2016

Publication series

Name2016 12th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery, ICNC-FSKD 2016

Conference

Conference12th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery, ICNC-FSKD 2016
Country/TerritoryChina
CityChangsha
Period13/08/1615/08/16

Fingerprint

Dive into the research topics of 'Enhancing text classification with the Universum'. Together they form a unique fingerprint.

Cite this