Abstract
In this work, the ferroelectric characteristic of a 5 nm Hf0.5Zr0.5O2 (HZO) metal-ferroelectric-insulator-semiconductor (MFIS) device is enhanced through strained complementary metal oxide semiconductor (CMOS)-compatible TiN electrode engineering. Strained TiN top-layer electrodes with different nitrogen (N) concentrations are deposited by adjusting the sputtering process conditions. The TiN electrode with 18% N exhibits a compressive characteristic, which induces tensile stress in a 5 nm HZO film. A device with 18% N in TiN shows a higher remanent polarization (2Pr) and larger capacitance value than the compared sample, indicating that the strained TiN is promising for enhancing the ferroelectricity of sub-5 nm HZO devices.
Original language | English |
---|---|
Article number | 468 |
Pages (from-to) | 1-8 |
Number of pages | 8 |
Journal | Nanomaterials |
Volume | 12 |
Issue number | 3 |
DOIs | |
State | Published - 1 Feb 2022 |
Keywords
- Compressive
- Ferroelectric
- HfZrO2
- Strained TiN
- Sub-5 nm