Abstract
We demonstrate polymeric piezocapacitive pressure sensors based on a novel composite dielectric film of poly(dimethylsiloxane) elastomeric silicone and zinc oxide tetrapod. With an appropriate loading of zinc oxide tetrapods, composite piezocapacitive pressure sensors show a 75-fold enhancement of pressure sensitivity over pristine devices, achieving a marked value as high as 2.55 kPa-1. The limit of detection was estimated to be about 10 mg, corresponding to a subtle stimulus of only 1.0 Pa. Besides, versatile functionalities such as detection of finger bending/straightening, calligraphy writing, and air flow blowing have been investigated. It is expected that the proposed piezocapacitive pressure sensors incorporating stress-sensitive additives of zinc oxide nanostructures may provide a promising means for potential applications in ultrasensitive wearable, healthcare systems and human-machine interfaces.
Original language | English |
---|---|
Pages (from-to) | 6076-6086 |
Number of pages | 11 |
Journal | Nanoscale |
Volume | 13 |
Issue number | 12 |
DOIs | |
State | Published - 28 Mar 2021 |