Abstract
The Ni-metal-induced crystallization (MIC) of amorphous Si (α-Si) has been employed to fabricate lowtemperature polycrystalline silicon (poly-Si) thin-film transistors (TFTs). Most studies have focused only on reducing Ni contamination because Ni residues cause high leakage current in MIC-TFTs. Also of concern is the source/drain (S/D) series resistance, which degrades the device performance (driving ability) that might vary with the Ni concentration in MIC-TFTs. Improving the driving ability of MIC-TFTs requires a detailed understanding of how Ni residues affect S/D series resistance. This study investigates how Ni concentration affects S/D series resistance by using the transmission line method. The results of this study provide further insight into how Ni concentration and resistance are related. The results show that the S/D series resistance and channel resistance decreased with a reduction in Ni concentration in MIC poly-Si because of better crystalline quality and lower degradation of the donor concentration. This phenomenon was caused by the Ni concentration forming less NiSi2 nucleation sites to generate a large grain size; Ni atoms serve as acceptor-like dopants in silicon, which counteract with the effects of n-type doping, subsequently reducing the donor concentration in the S/D region.
Original language | English |
---|---|
Pages (from-to) | 500-503 |
Number of pages | 4 |
Journal | Thin Solid Films |
Volume | 544 |
DOIs | |
State | Published - 1 Oct 2013 |
Keywords
- Metal-induced crystallization (MIC)
- Ni concentration
- Poly-Si
- Source/drain resistance
- Thin film transistors (TFTs)