Effect of Film Morphology on Electrical Conductivity of PEDOT:PSS

Aditya Saha, Daisuke Ohori, Takahiko Sasaki, Keisuke Itoh, Ryuji Oshima, Seiji Samukawa*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

4 Scopus citations

Abstract

Commercially available formulations of the popular conductive polymer, poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) are aqueous dispersions that require the addition of secondary dopants such as dimethyl sulphoxide (DMSO) or ethylene glycol (EG) for fabricated films to have the desired levels of conductivity. CleviosTM F HC Solar, a formulation of PEDOT:PSS produced by Heraeus, GmbH, achieves over 500 S/cm without these secondary dopants. This work studies whether secondary dopants such as DMSO have any additional effect on this type of PEDOT:PSS. The temperature dependencies of the conductivity of F HC Solar spin-coated thin films measured using a four-probe method seem to exhibit different charge transport properties compared with secondary doped PH1000. Observations made using atomic force microscopy (AFM) show that different concentrations of DMSO affect the orientation of the PEDOT domains in the thin film. These morphological changes cause room temperature conductivity to reduce from 640 S/cm in pristine films to as low as 555 S/cm after adding 7 wt% of DMSO along the film. Such tuning may prove useful in future applications of PEDOT:PSS, such as nanoprobes, transistors and hybrid solar cells.

Original languageEnglish
Article number95
JournalNanomaterials
Volume14
Issue number1
DOIs
StatePublished - Jan 2024

Keywords

  • PEDOT:PSS
  • conductivity
  • morphology

Fingerprint

Dive into the research topics of 'Effect of Film Morphology on Electrical Conductivity of PEDOT:PSS'. Together they form a unique fingerprint.

Cite this