Effect of catalyst size on hydrogen storage capacity of Pt-impregnated active carbon via spillover

Cheng Si Tsao*, Yi Ren Tzeng, Ming Sheng Yu, Cheng-Yu Wang, Huan Hsiung Tseng, Tsui Yun Chung, Hsiu Chu Wu, Takahiro Yamamoto, Katsumi Kaneko, Sow Hsin Chen

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

71 Scopus citations

Abstract

There are two regimes that exhibit two distinctive behaviors of spillover. The present study used small-angle X-ray scattering (SAXS) to measure size distribution of Pt nanoparticles in the bulk Pt-impregnated active carbon sample. The peak position of the size distribution as determined by SAXS turns out to be at ∼1 nm, which is rarely discussed in this field. SAXS technique is complementary to the other characterization methods. The experimental clue coming from SAXS measurement and our hydrogen storage capacity study shows that the impregnated Pt nanoparticles of ∼1 nm in size can enhance the hydrogen spillover effect. It can significantly increase the room temperature hydrogen uptake compared to currently studied similar systems. The mass loading of catalyst is not a critical factor. Tuning the pore-confined Pt sizes (<2 nm) in combination with an optimum activation method should play an effective role in further enhancement via the spillover effect.

Original languageEnglish
Pages (from-to)1060-1063
Number of pages4
JournalJournal of Physical Chemistry Letters
Volume1
Issue number7
DOIs
StatePublished - 1 Apr 2010

Fingerprint

Dive into the research topics of 'Effect of catalyst size on hydrogen storage capacity of Pt-impregnated active carbon via spillover'. Together they form a unique fingerprint.

Cite this