Dynamic Gradient Sparse Update for Edge Training

I. Hsuan Li*, Tian Sheuan Chang

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Training on edge devices enables personalized model fine-tuning to enhance real-world performance and maintain data privacy. However, the gradient computation for backpropagation in the training requires significant memory buffers to store intermediate features and compute losses. This is unacceptable for memory-constrained edge devices such as microcontrollers. To tackle this issue, we propose a training acceleration method using dynamic gradient sparse updates. This method updates the important channels and layers only and skips gradient computation for the less important channels and layers to reduce memory usage for each update iteration. In addition, the channel selection is dynamic for different iterations to traverse most of the parameters in the update layers along the time dimension for better performance. The experimental result shows that the proposed method enables an ImageNet pre-trained MobileNetV2 trained on CIFAR-10 to achieve an accuracy of 85.77% while updating only 2% of convolution weights within 256KB on-chip memory. This results in a remarkable 98% reduction in feature memory usage compared to dense model training.

Original languageEnglish
Title of host publicationISCAS 2024 - IEEE International Symposium on Circuits and Systems
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9798350330991
DOIs
StatePublished - 2024
Event2024 IEEE International Symposium on Circuits and Systems, ISCAS 2024 - Singapore, Singapore
Duration: 19 May 202422 May 2024

Publication series

NameProceedings - IEEE International Symposium on Circuits and Systems
ISSN (Print)0271-4310

Conference

Conference2024 IEEE International Symposium on Circuits and Systems, ISCAS 2024
Country/TerritorySingapore
CitySingapore
Period19/05/2422/05/24

Keywords

  • dynamic training
  • memory-efficient training

Fingerprint

Dive into the research topics of 'Dynamic Gradient Sparse Update for Edge Training'. Together they form a unique fingerprint.

Cite this