Driving in traffic: Short-range sensing for urban collision avoidance

Chuck Thorpe*, Dave Duggins, Jay Gowdy, Rob MacLaughlin, Christoph Mertz, Mel Siegel, Arne Suppé, Chieh-Chih Wang, Teruko Yata

*Corresponding author for this work

Research output: Contribution to journalConference articlepeer-review

10 Scopus citations


Intelligent vehicles are beginning to appear on the market, but so far their sensing and warning functions only work on the open road. Functions such as run-off-road warning or adaptive cruise control are designed for the uncluttered environments of open highways. We are working on the much more difficult problem of sensing and driver interfaces for driving in urban areas. We need to sense cars and pedestrians and curbs and fire plugs and bicycles and lamp posts; we need to predict the paths of our own vehicle and of other moving objects; and we need to decide when to issue alerts or warnings to both the driver of our own vehicle and (potentially) to nearby pedestrians. No single sensor is currently able to detect and track all relevant objects. We are working with radar, ladar, stereo vision, and a novel light-stripe range sensor. We have installed a subset of these sensors on a city bus, driving through the streets of Pittsburgh on its normal runs. We are using different kinds of data fusion for different subsets of sensors, plus a coordinating framework for mapping objects at an abstract level.

Original languageEnglish
Pages (from-to)201-205
Number of pages5
JournalProceedings of SPIE - The International Society for Optical Engineering
StatePublished - 1 Jan 2002
EventUnmanned Ground Vehicle Technology IV - Orlando, FL, United States
Duration: 2 Apr 20023 Apr 2002


Dive into the research topics of 'Driving in traffic: Short-range sensing for urban collision avoidance'. Together they form a unique fingerprint.

Cite this