Dose-response formation of N7-(3-benzo[1,3]dioxol-5-yl-2-hydroxypropyl)guanine in liver and urine correlates with micronucleated reticulocyte frequencies in mice administered safrole oxide

Kuen Yuh Wu, Yu Tzu Wei, Yu Syuan Luo, Li Chin Shen, Bao Suei Chang, Ya Yin Chen, Yan Chi Huang, Hui Fen Huang, Wen Sheng Chung, Su Yin Chiang*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

Safrole oxide (SAFO), a metabolite of naturally occurring hepatocarcinogen safrole, is implicated in causing DNA adduct formation. Our previous study first detected the most abundant SAFO-induced DNA adduct, N7-(3-benzo[1,3] dioxol-5-yl-2-hydroxypropyl)guanine (N7γ-SAFO-G), in mouse urine using a well-developed isotope-dilution high-performance liquid chromatography-electrospray ionization tandem mass spectrometry (ID-HPLC-ESI-MS/MS) method. This study further elucidated the genotoxic mode of action of SAFO in mice treated with SAFO 30, 60, 90, or 120 mg/kg for 28 days. The ID-HPLC-ESI-MS/MS method detected N7γ-SAFO-G with excellent sensitivity and specificity in mouse liver and urine of SAFO-treated mice. Our data provide the first direct evidence of SAFO-DNA adduct formation in rodent tissues. N7γ-SAFO-G levels in liver were significantly increased by SAFO 120 mg/kg compared with SAFO 30 mg/kg, suggesting rapid spontaneous or enzymatic depurination of N7γ-SAFO-G in tissue DNA. Urinary N7γ-SAFO-G exhibited a sublinear dose response. Moreover, the micronucleated peripheral reticulocyte frequencies increased dose-dependently and significantly correlated with N7γ-SAFO-G levels in liver (r = 0.8647; p < 0.0001) and urine (r = 0.846; p < 0.0001). Our study suggests that safrole-mediated genotoxicity may be caused partly by its metabolic activation to SAFO and that urinary N7γ-SAFO-G may serve as a chemically-specific cancer risk biomarker for safrole exposure.

Original languageEnglish
Article number114056
JournalFood and Chemical Toxicology
Volume181
DOIs
StatePublished - Nov 2023

Keywords

  • Isotope dilution
  • Liquid chromatography-tandem mass spectrometry
  • Micronuclei
  • N7-guanine adduct
  • Safrole
  • Safrole oxide

Fingerprint

Dive into the research topics of 'Dose-response formation of N7-(3-benzo[1,3]dioxol-5-yl-2-hydroxypropyl)guanine in liver and urine correlates with micronucleated reticulocyte frequencies in mice administered safrole oxide'. Together they form a unique fingerprint.

Cite this