TY - JOUR
T1 - Distinct Nanostructures and Organogel Driven by Reversible Molecular Switching of a Tetraphenylethene-Involved Calix[4]arene-Based Amphiphilic [2]Rotaxane
AU - Arumugaperumal, Reguram
AU - Raghunath, Putikam
AU - Lin, Ming-Chang
AU - Chung, Wen-Sheng
PY - 2018/10/23
Y1 - 2018/10/23
N2 - Aggregation induced emission (AIE) active and acid/base controllable amphiphilic [2]rotaxanes R1 and R2 were successfully constructed with tetraphenylethene (TPE) as a stopper and t-butylcalix[4]arene or calix[4]arene macrocycle as a wheel over the axle component. The AIE effect of [2]rotaxanes R1 and R2 was greatly affected by the molecular shuttling of t-butylcalix[4]arene or calix[4]arene macrocycle, which was triggered by the acid/base strategy. In the case of [2]rotaxane R1, aggregation was achieved in the presence of less amount of water compared with those of [2]rotaxane R2, and the deprotonated [2]rotaxanes R1-b and R2-b, owing to the stronger interaction between the TPE and t-butylcalix[4]arene macrocycle and restricted intramolecular rotation (RIR), thus making it responses in less quantity of water along with highly fluorescent emission. [2]Rotaxane R1-b started to aggregate at 70% water fraction (fw), while [2]rotaxane R2-b started to aggregate at 75% fw which allowed them to morph into hollow nanospheres, whereas they formed only nanospheres at 99% fw in CH3CN/water cosolvent system due to the higher degree of aggregation in aqueous media. To our delight, controllable morphology of self-assembled structures was indeed formed from these [2]rotaxanes. Interestingly, by the interplay of a wide range of multi-self-assembly driving forces, the slack stacking of rotaxane unit forms a hollow on the surface of nanospheres to become hollow nanospheres. Among the four [2]rotaxanes studied here, R1 possessed a narrower HOMO-LUMO band gap compared to those others, as confirmed by computational study. Furthermore, only [2]rotaxane R1 formed organogel in methanol solvent and its reversible gel-sol transition could be achieved by the addition of acid and base. This implies that the formation of dumbbell shape cross-linked 3D network structures were mainly governed by π- π stacking, van der Waals force, and intermolecular H-bonding interactions during the gelation processes.
AB - Aggregation induced emission (AIE) active and acid/base controllable amphiphilic [2]rotaxanes R1 and R2 were successfully constructed with tetraphenylethene (TPE) as a stopper and t-butylcalix[4]arene or calix[4]arene macrocycle as a wheel over the axle component. The AIE effect of [2]rotaxanes R1 and R2 was greatly affected by the molecular shuttling of t-butylcalix[4]arene or calix[4]arene macrocycle, which was triggered by the acid/base strategy. In the case of [2]rotaxane R1, aggregation was achieved in the presence of less amount of water compared with those of [2]rotaxane R2, and the deprotonated [2]rotaxanes R1-b and R2-b, owing to the stronger interaction between the TPE and t-butylcalix[4]arene macrocycle and restricted intramolecular rotation (RIR), thus making it responses in less quantity of water along with highly fluorescent emission. [2]Rotaxane R1-b started to aggregate at 70% water fraction (fw), while [2]rotaxane R2-b started to aggregate at 75% fw which allowed them to morph into hollow nanospheres, whereas they formed only nanospheres at 99% fw in CH3CN/water cosolvent system due to the higher degree of aggregation in aqueous media. To our delight, controllable morphology of self-assembled structures was indeed formed from these [2]rotaxanes. Interestingly, by the interplay of a wide range of multi-self-assembly driving forces, the slack stacking of rotaxane unit forms a hollow on the surface of nanospheres to become hollow nanospheres. Among the four [2]rotaxanes studied here, R1 possessed a narrower HOMO-LUMO band gap compared to those others, as confirmed by computational study. Furthermore, only [2]rotaxane R1 formed organogel in methanol solvent and its reversible gel-sol transition could be achieved by the addition of acid and base. This implies that the formation of dumbbell shape cross-linked 3D network structures were mainly governed by π- π stacking, van der Waals force, and intermolecular H-bonding interactions during the gelation processes.
UR - http://www.scopus.com/inward/record.url?scp=85054665445&partnerID=8YFLogxK
U2 - 10.1021/acs.chemmater.8b03286
DO - 10.1021/acs.chemmater.8b03286
M3 - Article
AN - SCOPUS:85054665445
SN - 0897-4756
VL - 30
SP - 7221
EP - 7233
JO - Chemistry of Materials
JF - Chemistry of Materials
IS - 20
ER -