TY - JOUR
T1 - Dexmedetomidine reduces lipopolysaccharide induced neuroinflammation, sickness behavior, and anhedonia
AU - Yeh, Ching Hua
AU - Hsieh, Liang Po
AU - Lin, Ming Chung
AU - Wei, Tsui Shan
AU - Lin, Hui Ching
AU - Chang, Chia Cheng
AU - Hsing, Chung Hsi
N1 - Publisher Copyright:
© 2018 Yeh et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2018/1
Y1 - 2018/1
N2 - Background Peripheral innate immune response may induce sickness behavior through activating microglia, excessive cytokines production, and neuroinflammation. Dexmedetomidine (Dex) has anti-inflammatory effect. We investigated the effects of Dex on lipopolysaccharide (LPS)induced neuroinflammation and sickness behavior in mice. Materials and methods BALB/c mice were intraperitoneally (i.p.) injected with Dex (50 ug/kg) or vehicle. One hour later, the mice were injected (i.p.) with Escherichia coli LPS (0.33 mg/kg) or saline (n = 6 in each group). We analyzed the food and water intake, body weight loss, and sucrose preference of the mice for 24h. We also determined microglia activation and cytokines expression in the brains of the mice. In vitro, we determine cytokines expression in LPS-treated BV-2 microglial cells with or without Dex treatment. Results In the Dex-pretreated mice, LPS-induced sickness behavior (anorexia, weight loss, and social withdrawal) were attenuated and microglial activation was lower than vehicle control. The mRNA expression of TNF-α, MCP-1, indoleamine 2, 3 dioxygenase (IDO), caspase-3, and iNOS were increased in the brain of LPS-challenged mice, which were reduced by Dex but not vehicle. Conclusion Dexmedetomidine diminished LPS-induced neuroinflammation in the mouse brain and modulated the cytokine-associated changes in sickness behavior.
AB - Background Peripheral innate immune response may induce sickness behavior through activating microglia, excessive cytokines production, and neuroinflammation. Dexmedetomidine (Dex) has anti-inflammatory effect. We investigated the effects of Dex on lipopolysaccharide (LPS)induced neuroinflammation and sickness behavior in mice. Materials and methods BALB/c mice were intraperitoneally (i.p.) injected with Dex (50 ug/kg) or vehicle. One hour later, the mice were injected (i.p.) with Escherichia coli LPS (0.33 mg/kg) or saline (n = 6 in each group). We analyzed the food and water intake, body weight loss, and sucrose preference of the mice for 24h. We also determined microglia activation and cytokines expression in the brains of the mice. In vitro, we determine cytokines expression in LPS-treated BV-2 microglial cells with or without Dex treatment. Results In the Dex-pretreated mice, LPS-induced sickness behavior (anorexia, weight loss, and social withdrawal) were attenuated and microglial activation was lower than vehicle control. The mRNA expression of TNF-α, MCP-1, indoleamine 2, 3 dioxygenase (IDO), caspase-3, and iNOS were increased in the brain of LPS-challenged mice, which were reduced by Dex but not vehicle. Conclusion Dexmedetomidine diminished LPS-induced neuroinflammation in the mouse brain and modulated the cytokine-associated changes in sickness behavior.
UR - http://www.scopus.com/inward/record.url?scp=85040829137&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0191070
DO - 10.1371/journal.pone.0191070
M3 - Article
C2 - 29351316
AN - SCOPUS:85040829137
SN - 1932-6203
VL - 13
JO - PLoS ONE
JF - PLoS ONE
IS - 1
M1 - e0191070
ER -