Abstract
An equiatomic CoCrFeMnNi high-entropy alloy under hydrostatic compression is investigated using in-situ angular-dispersive X-ray diffraction to explore the polymorphism in high entropy alloy systems. The metallic system is of face-centered-cubic structure at ambient condition and applied hydrostatic pressures up to 20 GPa via diamond anvil cell. The angle-resolved diffraction-intensity evolutions of multiple diffraction peaks were collected simultaneously to elucidate the phase stability examinations. The phase transformation from face-centered-cubic to hexagonal-close-packed structure was evidently observed in CoCrFeMnNi alloy accompanied by a deviatoric strain subjected to the hydrostatic compression. We found lattice-asymmetric crossover before and after the phase transformation subjected to hydrostatic compression surroundings. Deviatoric strain triggers fcc-hcp phase transformation as local heterogeneity-driven lattice distortion is significant for CoCrFeMnNi alloy.
Original language | English |
---|---|
Pages (from-to) | 116-121 |
Number of pages | 6 |
Journal | Journal of Alloys and Compounds |
Volume | 792 |
DOIs | |
State | Published - 5 Jul 2019 |
Keywords
- Cantor alloy
- High entropy alloys
- High pressure
- Phase transformation