TY - JOUR
T1 - Development of a traditional Chinese medicine-based agent for the treatment of cancer cachexia
AU - Wu, Kun Chang
AU - Chu, Po Chen
AU - Cheng, Yu Jung
AU - Li, Chia Ing
AU - Tian, Jingkui
AU - Wu, Hsing Yu
AU - Wu, Szu Hsien
AU - Lai, Yi Chun
AU - Kao, Hsiang Han
AU - Hsu, Ao Lin
AU - Lin, Hsiang Wen
AU - Lin, Chih Hsueh
N1 - Publisher Copyright:
© 2022 The Authors. Journal of Cachexia, Sarcopenia and Muscle published by John Wiley & Sons Ltd on behalf of Society on Sarcopenia, Cachexia and Wasting Disorders.
PY - 2022/8
Y1 - 2022/8
N2 - Background: Despite recent advances in understanding the pathophysiology of cancer cachexia, prevention/treatment of this debilitating disease remains an unmet medical need. Methods: We developed an integrated, multi-tiered strategy involving both in vitro and in vivo muscle atrophy platforms to identify traditional Chinese medicine (TCM)-based anti-cachectic agents. In the initial screening, we used inflammatory cytokine-induced atrophy of C2C12 myotubes as a phenotypic screening platform to assess the protective effects of TCMs. The selected TCMs were then evaluated for their abilities to protect Caenorhabditis elegans from age-related reduction of mobility and contractility, followed by the C-26 colon adenocarcinoma mouse model of cachexia to confirm the anti-muscle atrophy effects (body/skeletal muscle weights, fibre size distribution, grip strengths, and serum IL-6). Transcriptome analysis, quantitative real-time polymerase chain reaction, and immunoblotting were performed to gain understanding of the potential mechanism(s) by which effective TCM protected against C26 tumour-induced muscle atrophy. Results: Of 29 widely used TCMs, Dioscorea radix (DR) and Mu Dan Pi (MDP) showed a complete protection (all P values, 0.0002) vis-à-vis C26 conditioned medium control in the myotube atrophy platform. MDP exhibited a unique ability to ameliorate age-associated decreases in worm mobility, accompanied by improved total body contractions, relative to control (P < 0.0001 and <0.01, respectively), which, however, was not noted with DR. This differential in vivo protective effect between MDP and DR was also confirmed in the C-26 mouse model. MDP at 1000 mg/kg (MDP-H) was effective in protecting body weight loss (P < 0.05) in C-26 tumour-bearing mice without changing food or water intake, accompanied by the restoration of the fibre size distribution of hindleg skeletal muscles (P < 0.0001) and the forelimb grip strength (P < 0.05). MDP-treated C-26-tumour-bearing mice were alert, showed normal posture and better body conditions, and exhibited lower serum IL-6 levels (P = 0.06) relative to vehicle control. This decreased serum IL-6 was associated with the in vitro suppressive effect of MDP (25 and 50 μg/mL) on IL-6 secretion into culture medium by C26 cells. RNA-seq analysis, followed by quantitative real-time polymerase chain reaction and/or immunoblotting, shows that MDP's anti-cachectic effect was attributable to its ability to reverse the C-26 tumour-induced re-programming of muscle homoeostasis-associated gene expression, including that of two cachexia drivers (MuRF1 and Atrogin-1), in skeletal muscles. Conclusions: All these findings suggest the translational potential of MDP to foster new strategies for the prevention and/or treatment of cachexia. The protective effect of MDP on other types of muscle atrophy such as sarcopenia might warrant investigations.
AB - Background: Despite recent advances in understanding the pathophysiology of cancer cachexia, prevention/treatment of this debilitating disease remains an unmet medical need. Methods: We developed an integrated, multi-tiered strategy involving both in vitro and in vivo muscle atrophy platforms to identify traditional Chinese medicine (TCM)-based anti-cachectic agents. In the initial screening, we used inflammatory cytokine-induced atrophy of C2C12 myotubes as a phenotypic screening platform to assess the protective effects of TCMs. The selected TCMs were then evaluated for their abilities to protect Caenorhabditis elegans from age-related reduction of mobility and contractility, followed by the C-26 colon adenocarcinoma mouse model of cachexia to confirm the anti-muscle atrophy effects (body/skeletal muscle weights, fibre size distribution, grip strengths, and serum IL-6). Transcriptome analysis, quantitative real-time polymerase chain reaction, and immunoblotting were performed to gain understanding of the potential mechanism(s) by which effective TCM protected against C26 tumour-induced muscle atrophy. Results: Of 29 widely used TCMs, Dioscorea radix (DR) and Mu Dan Pi (MDP) showed a complete protection (all P values, 0.0002) vis-à-vis C26 conditioned medium control in the myotube atrophy platform. MDP exhibited a unique ability to ameliorate age-associated decreases in worm mobility, accompanied by improved total body contractions, relative to control (P < 0.0001 and <0.01, respectively), which, however, was not noted with DR. This differential in vivo protective effect between MDP and DR was also confirmed in the C-26 mouse model. MDP at 1000 mg/kg (MDP-H) was effective in protecting body weight loss (P < 0.05) in C-26 tumour-bearing mice without changing food or water intake, accompanied by the restoration of the fibre size distribution of hindleg skeletal muscles (P < 0.0001) and the forelimb grip strength (P < 0.05). MDP-treated C-26-tumour-bearing mice were alert, showed normal posture and better body conditions, and exhibited lower serum IL-6 levels (P = 0.06) relative to vehicle control. This decreased serum IL-6 was associated with the in vitro suppressive effect of MDP (25 and 50 μg/mL) on IL-6 secretion into culture medium by C26 cells. RNA-seq analysis, followed by quantitative real-time polymerase chain reaction and/or immunoblotting, shows that MDP's anti-cachectic effect was attributable to its ability to reverse the C-26 tumour-induced re-programming of muscle homoeostasis-associated gene expression, including that of two cachexia drivers (MuRF1 and Atrogin-1), in skeletal muscles. Conclusions: All these findings suggest the translational potential of MDP to foster new strategies for the prevention and/or treatment of cachexia. The protective effect of MDP on other types of muscle atrophy such as sarcopenia might warrant investigations.
KW - C-26 tumour-bearing model
KW - C2C12 cell model
KW - Cachexia
KW - Caenorhabditis elegans model
KW - Muscle atrophy
KW - Traditional Chinese medicine
UR - http://www.scopus.com/inward/record.url?scp=85132336896&partnerID=8YFLogxK
U2 - 10.1002/jcsm.13028
DO - 10.1002/jcsm.13028
M3 - Article
C2 - 35718751
AN - SCOPUS:85132336896
SN - 2190-5991
VL - 13
SP - 2073
EP - 2087
JO - Journal of Cachexia, Sarcopenia and Muscle
JF - Journal of Cachexia, Sarcopenia and Muscle
IS - 4
ER -