TY - JOUR
T1 - Development and efficacy of lateral flow point-of-care testing devices for rapid and mass covid-19 diagnosis by the detections of sars-cov-2 antigen and anti-sars-cov-2 antibodies
AU - Hsieh, Wen Yeh
AU - Lin, Cheng Han
AU - Lin, Tzu Ching
AU - Lin, Chao Hsu
AU - Chang, Hui Fang
AU - Tsai, Chin Hung
AU - Wu, Hsi Tien
AU - Lin, Chih Sheng
N1 - Publisher Copyright:
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2021/10
Y1 - 2021/10
N2 - The COVID-19 pandemic is an ongoing global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in 2020–2021. COVID-19 is becoming one of the most fatal pandemics in history and brings a huge challenge to the global healthcare system. Opportune detection, confinement, and early treatment of infected cases present the first step in combating COVID-19. Diagnosis via viral nucleic acid amplification tests (NAATs) is frequently employed and considered the standard procedure. However, with an increasing urge for point-of-care tests, rapid and cheaper immunoassays are widely utilized, such as lateral flow immunoassay (LFIA), which can be used for rapid, early, and large-scale detection of SARS-CoV-2 infection. In this narrative review, the principle and technique of LFIA applied in COVID-19 antigen and antibody detection are introduced. The diagnostic sensitivity and specificity of the commercial LFIA tests are outlined and compared. Generally, LFIA antigen tests for SARS-CoV-2 are less sensitive than viral NAATs, the “gold standard” for clinical COVID-19 diagnosis. However, antigen tests can be used for rapid and mass testing in high-risk congregate housing to quickly identify people with COVID-19, implementing infection prevention and control measures, thus preventing transmission. LFIA anti- SARS-CoV-2 antibody tests, IgM and/or IgG, known as serology tests, are used for identification if a person has previously been exposed to the virus or vaccine immunization. Notably, advanced techniques, such as LFT-based CRISPR-Cas9 and surface-enhanced Raman spectroscopy (SERS), have added new dimensions to the COVID-19 diagnosis and are also discussed in this review.
AB - The COVID-19 pandemic is an ongoing global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in 2020–2021. COVID-19 is becoming one of the most fatal pandemics in history and brings a huge challenge to the global healthcare system. Opportune detection, confinement, and early treatment of infected cases present the first step in combating COVID-19. Diagnosis via viral nucleic acid amplification tests (NAATs) is frequently employed and considered the standard procedure. However, with an increasing urge for point-of-care tests, rapid and cheaper immunoassays are widely utilized, such as lateral flow immunoassay (LFIA), which can be used for rapid, early, and large-scale detection of SARS-CoV-2 infection. In this narrative review, the principle and technique of LFIA applied in COVID-19 antigen and antibody detection are introduced. The diagnostic sensitivity and specificity of the commercial LFIA tests are outlined and compared. Generally, LFIA antigen tests for SARS-CoV-2 are less sensitive than viral NAATs, the “gold standard” for clinical COVID-19 diagnosis. However, antigen tests can be used for rapid and mass testing in high-risk congregate housing to quickly identify people with COVID-19, implementing infection prevention and control measures, thus preventing transmission. LFIA anti- SARS-CoV-2 antibody tests, IgM and/or IgG, known as serology tests, are used for identification if a person has previously been exposed to the virus or vaccine immunization. Notably, advanced techniques, such as LFT-based CRISPR-Cas9 and surface-enhanced Raman spectroscopy (SERS), have added new dimensions to the COVID-19 diagnosis and are also discussed in this review.
KW - Antibodies
KW - Antig-n
KW - COVID-19
KW - Lateral flow immunoassay
KW - Lateral flow test
KW - SARS-CoV-2
UR - http://www.scopus.com/inward/record.url?scp=85116969531&partnerID=8YFLogxK
U2 - 10.3390/diagnostics11101760
DO - 10.3390/diagnostics11101760
M3 - Article
AN - SCOPUS:85116969531
SN - 2075-4418
VL - 11
JO - Diagnostics
JF - Diagnostics
IS - 10
M1 - 1760
ER -