TY - JOUR
T1 - Detection of susceptibility loci on APOA5 and COLEC12 associated with metabolic syndrome using a genome-wide association study in a Taiwanese population
AU - Lin, Eugene
AU - Kuo, Po Hsiu
AU - Liu, Yu Li
AU - Yang, Albert C.
AU - Tsai, Shih Jen
N1 - Publisher Copyright:
© Lin et al.
PY - 2017/11/1
Y1 - 2017/11/1
N2 - Background: Although the association of single nucleotide polymorphisms (SNPs) with metabolic syndrome (MetS) has been reported in various populations in several genome-wide association studies (GWAS), the data is not conclusive. In this GWAS study, we assessed whether SNPs are associated with MetS and its individual components independently and/or through complex interactions in a Taiwanese population. Methods: A total of 10,300 Taiwanese subjects were assessed in this study. Metabolic traits such as waist circumference, triglyceride, high-density lipoprotein (HDL) cholesterol, systolic and diastolic blood pressure, and fasting glucose were measured. Results: Our data showed an association of MetS at the genome-wide significance level (P < 8.6 x 10-8) with two SNPs, including the rs662799 SNP in the apolipoprotein A5 (APOA5) gene and the rs16944558 SNP in the collectin subfamily member 12 (COLEC12) gene. Moreover, we identified the effect of APOA5 rs662799 on triglyceride and HDL, the effect of rs1106475 in the actin filament associated protein 1 like 2 (AFAP1L2) gene on systolic blood pressure, and the effect of rs17667932 in the mediator complex subunit 30 (MED30) gene on fasting glucose. Additionally, we found that an interaction between the APOA5 rs662799 and COLEC12 rs16944558 SNPs influenced MetS, high triglyceride, and low HDL. Conclusions: Our study indicates that the APOA5 and COLEC12 genes may contribute to the risk of MetS and its individual components independently as well as through gene-gene interactions.
AB - Background: Although the association of single nucleotide polymorphisms (SNPs) with metabolic syndrome (MetS) has been reported in various populations in several genome-wide association studies (GWAS), the data is not conclusive. In this GWAS study, we assessed whether SNPs are associated with MetS and its individual components independently and/or through complex interactions in a Taiwanese population. Methods: A total of 10,300 Taiwanese subjects were assessed in this study. Metabolic traits such as waist circumference, triglyceride, high-density lipoprotein (HDL) cholesterol, systolic and diastolic blood pressure, and fasting glucose were measured. Results: Our data showed an association of MetS at the genome-wide significance level (P < 8.6 x 10-8) with two SNPs, including the rs662799 SNP in the apolipoprotein A5 (APOA5) gene and the rs16944558 SNP in the collectin subfamily member 12 (COLEC12) gene. Moreover, we identified the effect of APOA5 rs662799 on triglyceride and HDL, the effect of rs1106475 in the actin filament associated protein 1 like 2 (AFAP1L2) gene on systolic blood pressure, and the effect of rs17667932 in the mediator complex subunit 30 (MED30) gene on fasting glucose. Additionally, we found that an interaction between the APOA5 rs662799 and COLEC12 rs16944558 SNPs influenced MetS, high triglyceride, and low HDL. Conclusions: Our study indicates that the APOA5 and COLEC12 genes may contribute to the risk of MetS and its individual components independently as well as through gene-gene interactions.
KW - Gene-gene interactions
KW - Genome-wide association studies
KW - Metabolic syndrome
KW - Pathology Section
KW - Single nucleotide polymorphisms
UR - http://www.scopus.com/inward/record.url?scp=85032990465&partnerID=8YFLogxK
U2 - 10.18632/oncotarget.20967
DO - 10.18632/oncotarget.20967
M3 - Article
C2 - 29212154
AN - SCOPUS:85032990465
SN - 1949-2553
VL - 8
SP - 93349
EP - 93359
JO - Oncotarget
JF - Oncotarget
IS - 55
ER -