Design of smart EEG cap

Bor Shing Lin, Yao Kuang Huang, Bor-Shyh Lin*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

5 Scopus citations


Background and Objective: Brain machine interface (BMI) is a system which communicates the brain with the external machines. In general, an electroencephalograph (EEG) machine has to be used to monitor multi-channel brain responses to improve the BMI performance. However, the bulky size of the EEG machine and applying conductive gels in EEG electrodes also cause the inconvenience of daily life applications. How to select the relevant EEG channel and remove irrelevant channels is important and useful for the development of BMIs. 

Methods: In this research, a smart EEG cap was proposed to improve the above issues. Different from the conventional EEG machine, the proposed smart EEG cap contain a spatial filtering circuit to enhance EEG features in local area, and it could also select the relevant EEG channel automatically. Moreover, the novel dry active electrodes were also designed to acquire EEG without conductive gels in the hairy skin of the head, to improve the convenience in use. 

Results: Finally, the proposed smart EEG cap was applied in motion imagery-based BMI and several experiments were tested to valid the system performance. The proposed smart EEG cap could effectively enhance EEG features and select relevant EEG channel, and the information transfer rate of BMI was about 6.06 bits/min. 

Conclusions: The proposed smart EEG cap has advantages of measuring EEG without conductive gels and wireless transmission to effectively improve the convenience of use, and reduce the limitation of activity in daily life. In the future, it might be widely applied in other BMI applications.

Original languageEnglish
Pages (from-to)41-46
Number of pages6
JournalComputer Methods and Programs in Biomedicine
StatePublished - 1 Sep 2019


  • Brain machine interface
  • Dry active electrode
  • EEG cap
  • Spatial filtering circuit


Dive into the research topics of 'Design of smart EEG cap'. Together they form a unique fingerprint.

Cite this